首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photogenerated charge carriers for blend films of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) have been investigated by transient absorption spectroscopy. The blend film with a low PCBM fraction (<10 wt %) exhibits a wide absorption that ranges from 900 to 1000 nm, which is characteristic of the MDMO‐PPV hole polaron and PCBM radical anion. On the other hand, the blend film with a higher PCBM fraction (> 30 wt %) exhibits a major absorption band at ∼900 nm, which is characteristic of the PCBM radical cation. For identification of charge carriers, the absorption spectrum and molar absorption coefficient of each charged species have been evaluated separately using various combinations of electron donor and acceptor materials. Consequently, the MDMO‐PPV hole polaron has been found to have a broad absorption at ∼950 nm and the PCBM radical anion and cation show a distinct absorption at 1020 and 890 nm, respectively. On the basis of these absorption spectra, the transient spectra observed for the blend films have been simulated. The spectrum for a low PCBM fraction is well reproduced by superposition of the absorption spectra of the MDMO‐PPV hole polaron and PCBM radical anion. On the other hand, the spectrum for a high PCBM fraction is well reproduced by superposition of the absorption spectra of the MDMO‐PPV hole polaron, PCBM radical anion, and PCBM radical cation, which indicates that the PCBM radical cation is formed in the blend films with PCBM at a high concentration. Possible mechanisms for the formation of the PCBM radical cation in the blend are also discussed.  相似文献   

2.
In this paper we report on printed bulk heterojunction solar cells from poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) with power efficiencies of over 4 %. Devices have been produced by doctor blading, which is a reel‐to‐reel compatible large‐area coating technique. Devices exhibit a short‐circuit current of over 11.5 mA cm–2, a fill factor of 58 %, and an open‐circuit voltage of 615 mV, resulting in an AM1.5 power efficiency of over 4.0 % at 25 °C and under 100 mW cm–2. The mismatch factor of the solar simulator is cross‐calibrated by determining the spectral quantum efficiency of organic devices as well as of a calibrated Si device, and by the combination of outdoor tests; these efficiencies are precise within less than 3 % relative variation. Although the devices are regarded as fairly optimized, analysis in terms of a one‐diode equivalent circuit reveals residual losses and loss mechanisms. Most interestingly, the analysis points out the different properties of spin‐coated versus bladed devices. Based on this analysis, the future efficiency potential of P3HT–PCBM solar cells is analyzed.  相似文献   

3.
The preparation of 27 different derivatives of C60 and C70 fullerenes possessing various aryl (heteroaryl) and/or alkyl groups that are appended to the fullerene cage via a cyclopropane moiety and their use in bulk heterojunction polymer solar cells is reported. It is shown that even slight variations in the molecular structure of a compound can cause a significant change in its physical properties, in particular its solubility in organic solvents. Furthermore, the solubility of a fullerene derivative strongly affects the morphology of its composite with poly(3‐hexylthiophene), which is commonly used as active material in bulk heterojunction organic solar cells. As a consequence, the solar cell parameters strongly depend on the structure and the properties of the fullerene‐based material. The power conversion efficiencies for solar cells comprising these fullerene derivatives range from negligibly low (0.02%) to considerably high (4.1%) values. The analysis of extensive sets of experimental data reveals a general dependence of all solar cell parameters on the solubility of the fullerene derivative used as acceptor component in the photoactive layer of an organic solar cell. It is concluded that the best material combinations are those where donor and acceptor components are of similar and sufficiently high solubility in the solvent used for the deposition of the active layer.  相似文献   

4.
This work is a reinvestigation of the impact of blend morphology and thermal annealing on the electrical performance of regioregular‐P3HT:PC60BM bulk heterojunction organic solar cells. The morphological, structural, and electrical properties of the blend are experimentally investigated with atomic force microscopy, X‐ray diffraction, and time‐of‐flight measurements. Current–voltage characteristics of photodiode devices are measured in the dark and under illumination. Finally, the existence of exponential electronic band tails due to gap states is experimentally confirmed by measuring the device spectral response in the subband gap regime. This method reveals the existence of a large density of gap states, which is partially and systematically reduced by thermal annealing. When the band tails are properly accounted for in the drift and diffusion simulations, experimentally measured charge transport characteristics, under both dark and illuminated conditions and as a function of annealing time, can be satisfactorily reproduced. This work further confirms the critical impact of tails states on the performance of solar cells.  相似文献   

5.
体异质结太阳电池因其高效率特点受到了研究者的极大关注.使用添加剂DIO应用于MEH-PPV:PCBM结构中,改善活性层形貌.最终得到了在DIO浓度为20 mg/ml的时候器件短路电流密度最大(Jsc=8.74 mA/cm2),器件效率最高(PCE=2.44%),相比没有使用DIO的情况效率提升了55.4%.  相似文献   

6.
Research relating to organic solar cells based on solution‐processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film‐forming characteristics and film morphology than their small‐molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non‐polymeric, diketopyrrolopyrrole‐based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open‐circuit voltages, leading to power conversion efficiencies of 4.4 ± 0.4% under AM1.5G illumination (100 mW cm?2). Small molecules can therefore be solution processed to form high‐quality BHJ films, which may be used for low‐cost, flexible organic solar cells.  相似文献   

7.
The performance of bulk‐heterojunction (BHJ) solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g., by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. This paper highlights the role of residual solvent in the “dried” BHJ layer, and the effect of residual solvents on PCBM diffusion and ultimately the stability of the morphology. We show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM agglomerates. The addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the dry film, resulting in smaller PCBM agglomerates, and improves the fill factor of the BHJ device to 0.61 without further tempering. The addition of nitrobenzene also increases the P3HT crystalline content, while increasing the onset temperature for melting of P3HT side chains and backbone. The melting temperature for PCBM is also higher with the nitrobenzene additive present.  相似文献   

8.
By the introduction of different building blocks and side‐chains, a series of donor–acceptor type polymer acceptors containing naphthalene diimide have been successfully prepared. The theoretical and experimental results show that the molecular design effectively tunes the energy levels, solubility, and coplanarity of the acceptor polymers. The intermolecular packing, which has been considered as a key factor in the bulk heterojunction morphology, has been adjusted by changing the coplanarity. As a result of improved morphology and fine‐tuned energy levels, a power conversion efficiency of 6.0% has been demonstrated for the optimized devices, which is among the highest‐efficiencies for reported all‐polymer solar cells. The improved device performance may be attributed to the resemble crystallinity of the donor/acceptor polymers, which can lead to the optimal phase separation morphology balancing both charge transfer and transport.  相似文献   

9.
Changes in solar cell performance related to active area size were investigated using polymer bulk heterojunction devices. Cell geometry was defined by introduction of a sub‐electrode. The cells were uniform up to 16 cm2. The solar cells showed little change in performance up to a cell area of 1 cm2. As cell area increased above 4 cm2 the power conversion efficiency dropped significantly, mostly because of fill factor (FF) drop and short circuit current density (Jsc) suppression. The changes in FF and Jsc could not be described solely by a Shockley diode equation based on an equivalent circuit model unless photocurrent collection was also considered. As cell area increased, collection efficiency deviated from unity, which further reduced device performance. That deviation is attributed to acceleration of recombination loss at low built‐in junction potentials.  相似文献   

10.
Here, correlated AFM and scanning Kelvin probe microscopy measurements with sub‐100 nm resolution on the phase‐separated active layer of polymer‐fullerene (MDMO‐PPV:PCBM) bulk heterojunction solar cells in the dark and under illumination are described. Using numerical modeling a fully quantitative explanation for the contrast and shifts of the surface potential in dark and light is provided. Under illumination an excess of photogenerated electrons is present in both the donor and acceptor phases. From the time evolution of the surface potential after switching off the light the contributions of free and trapped electrons can be identified. Based on these measurements the relative 3D energy level shifts of the sample are calculated. Moreover, by comparing devices with fine and coarse phase separation, it is found that the inferior performance of the latter devices is, at least partially, due to poor electron transport.  相似文献   

11.
介绍了体异质结聚合物太阳电池的基本原理,并分析了限制体异质结有机太阳电池转化效率的因素。从提高激子的产生效率及其解离效率、电极对电荷的引出效率、电池的稳定性以及电池的光谱吸收范围四个方面,综述了提高体异质结聚合物太阳电池能量转化效率的方法。  相似文献   

12.
Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to‐date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3‐xClx solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin‐film solution processed perovskite solar cells with no mesoporous layer.  相似文献   

13.
The charge carrier dynamics in blend films of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and conjugated polymers with different ionization potentials are measured using transient absorption spectroscopy to study the formation mechanism of PCBM radical cation, which was previously discovered for blend films of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) and PCBM. On a nanosecond time scale after photoexcitation, polymer hole polaron and PCBM radical anion are observed but no PCBM radical cation is found in the blends. Subsequently, the fraction of polymer hole polarons decreases and that of PCBM radical cations increases with time. Finally, the fraction of PCBM radical cations becomes constant on a microsecond time scale. The final fraction of PCBM radical cation is dependent on the ionization potential of polymers but independent of the excitation wavelength. These findings show that the formation of PCBM radical cation is due to hole injection from polymer to PCBM domains. Furthermore, the energetic conditions for such hole injection in polymer/PCBM blend films are discussed on the basis of Monte Carlo analysis for hole hopping in a disordered donor/acceptor heterojunction with varying energetic parameters.  相似文献   

14.
In this study the charge dissociation at the donor/acceptor heterointerface of thermally evaporated planar heterojunction merocyanine/C60 organic solar cells is investigated. Deposition of the donor material on a heated substrate as well as post‐annealing of the complete devices at temperatures above the glass transition temperature of the donor material results in a twofold increase of the fill factor. An analytical model employing an electric‐field‐dependent exciton dissociation mechanism reveals that geminate recombination is limiting the performance of as‐deposited cells. Fourier‐transform infrared ellipsometry shows that, at temperatures above the glass transition temperature of the donor material, the orientation of the dye molecules in the donor films undergoes changes upon annealing. Based on this finding, the influence of the dye molecules’ orientations on the charge‐transfer state energies is calculated by quantum mechanical/molecular mechanics methods. The results of these detailed studies provide new insight into the exciton dissociation process in organic photovoltaic devices, and thus valuable guidelines for designing new donor materials.  相似文献   

15.
The detailed characterization of a dialkoxyphenylene‐difluorobenzothiadiazole based conjugated polymer poly[(2,5‐bis(2‐hexyldecyloxy)phenylene)‐alt‐(5,6‐difluoro‐4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) is reported. PPDT2FBT closely tracks theoretical photocurrent production while maintaining a high fill factor in remarkably thick films. In order to understand the properties that enable PPDT2FBT to function with thick active layers, the effect of film thickness on the material properties and device parameters was carefully studied and compared to three benchmark polymers. Optical modeling, grazing incidence wide angle X‐ray scattering, cross‐sectional transmission electron microscopy, transient photoconductivity, and extensive device work were carried out and have clarified the key structural features and properties that allow such thick active layers to function efficiently. The unique behavior of thick PPDT2FBT films arises from high vertical carrier mobility, an isotropic morphology with strong, vertical π–π stacking, and a suitable energy band structure. These physical characteristics allow efficient photocurrent extraction, internal quantum efficiencies near 100% and power conversion efficiencies over 9% from exceptionally thick active layers in both conventional and inverted architectures. The ability of PPDT2FBT to function efficiently in thick cells allows devices to fully attenuate incident sunlight while providing a pathway to defect‐free film processing over large areas, constituting a major advancement toward commercially viable organic solar cells.  相似文献   

16.
High photovoltaic device performance is demonstrated in ambient‐air‐processed bulk heterojunction solar cells having an active blend layer of organic poly(3‐hexylthiophene) (P3HT): [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1%, which is comparable to state‐of‐the‐art bulk heterojunction devices fabricated in air‐free environments. High‐resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post‐fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an ~4 nm aluminum oxide hole‐blocking layer present at the electron‐collecting contact interface.  相似文献   

17.
通过制备四种不同结构的器件,详细分析研究了活性层/阴极界面修饰对P3HT:PCBM聚合物体异质结太阳能电池性能的影响。当在P3HT:PCBM薄膜上旋涂一层PCBM,并蒸镀0.5 nm LiF时所制备的器件的填充因子和光电转换效率都得到较大的提高。对器件的光电性能和薄膜的形貌进行深入分析,阐明界面修饰的作用机理。  相似文献   

18.
19.
A comprehensive study of the effect of intraphase microstructure on organic photovoltaic (OPV) device performance is undertaken. Utilizing a bilayer device architecture, a small molecule donor (TIPS‐DBC) is deposited by both spin‐coating and by thermal evaporation in vacuum. The devices are then completed by thermal evaporation of C60, an exciton blocking layer and the cathode. This bilayer approach enables a direct comparison of device performance for donor layers in which the same material exhibits subtle differences in microstructure. The electrical performance is shown to differ considerably for the two devices. The bulk and interfacial properties of the donor layers are compared by examination with photoelectron spectroscopy in air (PESA), optical absorption spectroscopy, charge extraction of photo‐generated charge carriers by linearly increasing voltage (photo‐CELIV), time‐resolved photoluminescence measurements, X‐ray reflectometry (XR), and analysis of dark current behavior. The observed differences in device performance are shown to be influenced by changes to energy levels and charge transport properties resulting from differences in the microstructure of the donor layers. Importantly, this work demonstrates that in addition to the donor/acceptor microstructure, the intraphase microstructure can influence critical parameters and can therefore have a significant impact on OPV performance.  相似文献   

20.
For realizing flexible perovskite solar cells (PSCs), it is important to develop low‐temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole‐transport material based on 1,4‐bis(4‐sulfonatobutoxy)benzene and thiophene moieties (PhNa‐1T) and its application as a hole‐transport layer (HTL) material of high‐performance inverted‐type flexible PSCs are introduced. Compared with the conventionally used poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa‐1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa‐1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted‐type flexible PSCs. Moreover, the PhNa‐1T‐based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS‐based PSC. It is believed that PhNa‐1T is a promising candidate as an HTL material for high‐performance flexible PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号