首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnesium alloys present an alternative to medical cases in which polymeric sutures may not be ideal. To date, no efficient and low‐cost manufacturing process for the fabrication of magnesium‐based sutures can be found. To obtain an alternative, the previously characterised magnesium alloys ZEK100 (98% Mg), AX30 (96.2% Mg), AL36 (91% Mg) and MgCa0.8 (99.2% Mg) were cast, extruded into 30 mm diameter bars and extruded into 0.5 mm diameter wires. To determine the mechanical properties of the wires, grain size measurements, tensile tests as well as qualitative bending tests were carried out. The ZEK100 alloy's wires showed the finest microstructure having grains of 1.2 µm in diameter. Coarser microstructures were observed for MgCa0.8, AX30 and AL36. The alloy ZEK100 had the highest tensile stress (367 MPa) also revealing a brittle behaviour due to its fine microstructure. The tensile test, carried out for AX30 as well as AL36, resulted in comparable high fracture strains (10.6%) and tensile stresses (300 MPa). However, MgCa0.8 showed a tensile strength of 315 MPa and a low strain of 1.6%. Within the qualitative bending test wires made of the alloy AL36 were able to form tight knots, which is a key feature for suture applications. The comparison of the magnesium sutures with commercially available polymeric sutures revealed lower strength and elongation for the magnesium alloys. Yet, the wires exhibited mechanical properties that can meet the requirements of a suture material.  相似文献   

2.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析及力学性能测试等研究Zn元素对Mg-Y-Nd-Zr铸态合金显微组织及力学性能的影响。结果表明:随着Zn含量的增加,Mg-Y-Nd-Zr-xZn(x=0.0%,0.5%,1.0%,1.5%,质量分数)合金的晶粒逐渐细化,平均晶粒尺寸由(57±0.8)μm细化至(30±0.3)μm,晶界处共晶相的体积分数也逐渐增加。Mg-Y-Nd-Zr铸态合金中主要存在Mg12Nd相和Mg24Y5相,加入0.5%Zn后,合金中出现Mg12YZn相。随Zn含量的增加,Mg12YZn相的体积分数不断增大,合金的力学性能逐渐提高。当Zn含量为1.0%时,合金具有最优的力学性能,其抗拉强度、屈服强度和伸长率分别为(208±5.9),(159±3.9)MPa和(7.5±0.2)%,较未加Zn的合金分别提高了18,42MPa和1.2%。  相似文献   

3.
Sterilization can change properties of bioceramics Bioceramics made of bioinert alumina or zirconia and bioactive hydroxyapatite are well established implant materials. Implants have to be cleaned and sterilized. When sterilized some bioceramics change their color. This may effect their properties. No decrease of mechanical strength is observed when sterilizing alumina and the novel ceramic biocomposite AMC (Alumina Matrix Composite) with steam or Co60 Gamma irradiation. When sterilizing Y‐TZP zirconia with steam a decrease of strength is observed.  相似文献   

4.
热处理条件对锻造ZK60-Y镁合金力学性能的影响   总被引:4,自引:0,他引:4  
研究了不同热处理条件下锻造ZK60-Y镁合金微观组织的变化对其力学性能的影响.结果表明,直接进行人工时效的合金具有优越的强度和塑性.XRD分析表明,析出相主要有Mg2Zn3、Mg24Y5、Zn2Zr3和w-Mg3Y2Zn3.Mg2Zn3和w-Mg3Y2Zn3等析出相的尺寸、数量及其在基体中的分布状态对合金的力学性能影响很大.锻造态下大块破碎呈带状分布的Mg3Y2Zn3相及T4和T6态下粗化呈片层状的Mg2Zn3相是合金力学性能降低的主要原因.细小呈带状分布的Mg3Y2Zn3相和细层片状分布的Mg2Zn3相及其在此状态下细小的晶粒使T5态合金具有优越的抗拉强度和塑性.  相似文献   

5.
Aluminium‐magnesium‐scandium alloys offer good weldability, high corrosion resistance, high thermal stability and the potential for high strength by precipitation hardening. A problem of aluminium‐scandium alloys is the low solubility of about 0.3 mass‐% scandium when using conventional casting methods. The solution of scandium can be raised by higher cooling rates during solidification. This was realised by spray forming of Al‐4.5Mg‐0.7Sc alloys as flat deposits. Further cooling rates after solidification should also be high to prevent coarse precipitation of secondary Al3Sc. Therefore a cooling device was designed for the spray formed flat deposits. The flat deposits were rolled at elevated temperatures to close the porosity from spray forming. Microstructures, aging behaviour and tensile properties of the rolled sheets were investigated. Strength enhancements of about 100 MPa compared to conventional Al‐Mg‐Sc alloys were achieved.  相似文献   

6.
To improve the mechanical properties of cast aluminium alloys several post‐heat treatments are known. However, these treatments cannot directly be transposed to additively via selective laser melting manufactured aluminium alloys, e. g., aluminium‐silicon‐magnesium (AlSi10Mg). Therefore, this study aims to determine suitable post‐heat treatments to optimise the mechanical properties of SLM‐built AlSi10Mg specimen. The influence of various post‐heat treatment conditions on the material characteristics was examined through hardness and tensile tests. The findings indicate that the Vickers hardness and ultimate tensile strength could not be improved via secondary precipitation hardening, whereas the fracture elongation shows a value which is distinctly higher than the values of a comparable cast alloy. Solution annealing at 525 °C reduces the hardness and the ultimate tensile strength by about 40 % and increases the fracture elongation three times. A subsequent precipitation hardening allows recovery of 80 % of the as‐built hardness, and 90 % of the previous ultimate tensile strength combined with maintaining an improved fracture elongation of about 35 % compared to the respective as‐fabricated condition.  相似文献   

7.
镁及其合金是目前最轻的金属结构材料,合金化虽然提升了镁合金的力学性能,但导致其导热性能严重下降,限制了镁合金的应用。碳纳米管(CNTs)因具有优异的力学、热学等性能,是最理想的增强体之一,可以用于改善镁合金的力学性能和热学性能。采用粉末冶金法分别以纯Mg、Mg-9Al合金、Mg-6Zn合金为基体制备了不同CNTs含量的镁基复合材料,利用光学显微镜、扫描电子显微镜、透射电子显微镜对复合材料微观组织、基体与增强体界面及析出相进行表征,并对复合材料的拉伸性能和热学性能进行测试。研究结果表明,当CNTs质量分数不超过1.0%时,可提高纯镁基复合材料的导热性能,力学性能仅有稍微降低;将CNTs添加到Mg-9Al合金中,可以促进纳米尺度β-Mg 17 Al 12相在CNTs周围析出,降低了Al在Mg基体中的固溶度,使CNTs/Mg-9Al复合材料的导热性能有所提高。此外,在CNTs/Mg-6Zn复合材料界面处存在C原子和Mg原子的相互嵌入区,这种嵌入型界面不仅有利于复合材料力学性能的提高,也使CNTs起到加速电子移动的“桥”的作用,有利于该复合材料热导率的提高。当CNTs质量分数为0.6%时,CNTs/Mg-6Zn复合材料具有较为优异的热学性能和力学性能,其热导率为127.0 W/(m·K),抗拉强度为303.0 MPa,屈服强度为204.0 MPa,伸长率为5.0%。  相似文献   

8.
As-cast and as-extruded Mg–6Li–xAl–0.8Sn (x?=?0, 1, 3 and 5?wt-%) alloys were prepared. The microstructure and mechanical properties were investigated and discussed. The experimental results show that the Mg–6Li–0.8Sn alloy is composed of three phases: α-Mg, Mg2Sn and Li2MgSn. With the addition of Al, the test alloys display typical α-Mg?+?β-Li duplex structures. The new Mg17Al12 and LiMgAl2 phases were found in the Mg–6Li–1Al–0.8Sn alloy. The lamellar-type AlLi phase was formed whereas the Mg17Al12 phase disappeared in Mg–6Li–3Al–0.8Sn alloy. The LiMgAl2 phase vanished in the Mg–6Li–5Al–0.8Sn alloy. The mechanical properties of as-extruded alloys were remarkably improved. The as-extruded Mg–6Li–3Al–0.8Sn alloy exhibited the best mechanical properties, with a yield strength, tensile strength and elongation of 209.8?MPa, 242.6?MPa and 15.5%, respectively.  相似文献   

9.
The microstructure, texture, thermal conductivity and mechanical properties of the as-extruded Mg–5Zn–1Mn (ZM51) magnesium alloy were investigated on specimens with the extrusion direction (ED), the transverse direction (TD) and the normal to the extrude plane (ND), respectively. The results indicated that the thermal conductivity of ZM51 alloy at room temperature is 125 (W/m K), almost twice as high as other conventional commercial magnesium alloys, such as Mg–Al series and Mg–RE series. The effect of texture on anisotropy of mechanical properties and thermal conductivity has been analyzed. The strong crystallographic texture typical of Mg alloys results in much higher yield strength and tensile strength (UTS) in the extrusion direction, but higher ductility and thermal conductivity in the transverse direction.  相似文献   

10.
合金化元素Sn在镁基体中的固溶度受温度影响比较大,且能够与镁形成高强、高硬、热稳定性好的Mg2Sn金属间化合物,在理论研究和实际应用上引起了人们的广泛关注。基于Mg、Mg-Al-Zn系、Mg-Mn系、Mg-Zn系、Mg-Li系等合金,综述了Sn对纯镁及镁合金微观组织及力学性能的影响,概述了Sn对镁合金的腐蚀、电化学等其他性能的影响。最后展望了Sn在镁合金中的应用前景。  相似文献   

11.
Abstract

The development of new wrought magnesium alloys for automotive industry has increased in recent years owing to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties and low corrosion resistance of the magnesium alloys have led to searching a new kind of magnesium alloys for better strength, ductility and high corrosion resistance. The main objective of the present research is to investigate the mechanical properties and the corrosion behaviour of new magnesium alloys, Mg–Zn–Ag (ZQ) and Mg–Zn–Si–Ca (ZS) alloys. The ZQ6X and ZS6X–YCa alloys were prepared by using hot extrusion method. Hardness AC and DC polarisation tests were carried out on the extruded rods, which contain different amounts of silver or silicon and calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy. The microstructure was examined using optical and electron microscopy (TEM and SEM), X-ray analysis and EDS. The results showed that the silver addition improved the mechanical properties but decreased the corrosion resistance. The addition of silicon and calcium also affected both mechanical properties and corrosion behaviour. These results can be explained by the effects of alloying elements on microstructure of Mg–Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallisation behaviour.  相似文献   

12.
Si对AM50力学性能和高温蠕变性能的影响   总被引:3,自引:0,他引:3  
在基体合金AM50中分别加入Si和Ca,研究了Si和Ca对AM50-xSi合金的微观组织、力学性能及蠕变性能的影响.结果表明:加入Si后,合金高温蠕变性能随Si量的增加而增加并超过了AS41的水平;在AM50-xSi中加入微量Ca以后,合金中的Mg2Si相得到细化,从汉字状转变成颗粒状,室温及150℃拉伸性能明显提高.  相似文献   

13.
Magnesium(Mg) and its alloys as a novel kind of biodegradable material have attracted much fundamental research and valuable exploration to develop its clinical application. Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degradation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth.The surface modification also decreased the mechanical loss at the early stage adapting to the loadbearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of biodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants.  相似文献   

14.
High thermal stability and good mechanical properties are crucial for the wider future application of magnesium alloys. One of the most promising directions is the alloying of Mg with rare earth elements as Gd. The fine dispersion of metastable β′ phase (c‐base centred orthorhombic, a = 0.641 nm, b = 2.223 nm, c = 0.521 nm), already known from commercially successful WE alloys (Mg‐Y‐Nd‐Zr), precipitated in all three possible orientation modes during T6 treatment causes very pronounced age hardening in binary Mg‐Gd system and inhibits very effectively the dislocation motion during the creep. The stable β phase (Mg5Gd, f.c.c. structure, a = 2.234 nm) ensures the creep resistance comparable to WE alloys. A high content of Gd (above 10 wt.%) is necessary to attain the required microstructure. The addition of Sc (below 1 wt.%) and Mn (about 1.5 wt.%) suppresses the solubility of Gd in Mg considerably. The complex precipitation process involving the precipitation of very stable Mn2Sc, Mn and Gd containing phase and metastable β′ phase is responsible for superior creep properties of MgGd5Sc0.3Mn1 alloy at elevated temperatures. Even at 300°C the creep resistance is markedly better than for WE43 alloy. The increased Gd and Sc contents in MgGd10Sc0.8Mn1 alloy do not further improve the creep resistance.  相似文献   

15.
In this paper, ternary Mg–Zn–Ca magnesium alloys were investigated as degradable biomedical material. Tensile results showed that the mechanical properties of the alloys can be modulated by controlling Zn content. With increasing Zn contents, yield strength (YS), ultimate tensile strength (UTS) and ductility of the materials are increased at first and then decreased. In-vitro corrosion tests in Hank's simulated body fluid presented that the composition and microstructure of Mg–Zn–Ca alloys strongly affected their corrosion behavior. An increasing content of Zn element can lead to a high corrosion potential and bad corrosion resistance. The cytotoxicity evaluated by neutral red kits on L-929 cells revealed that Mg-1.0 Zn-1.0Ca, Mg-2.0 Zn-1.0 Ca, and Mg-3.0 Zn-1.0 Ca alloys did not induce toxicity in cells.  相似文献   

16.
采用重力铸造法制备Mg-4Al-4Si-0.75Sb(AS44-0.75Sb)(质量分数/%,下同)镁合金,研究铸态合金的显微组织和室温力学性能。结果表明:铸态AS44-0.75Sb合金主要由α-Mg基体、β-Mg17Al12相、Mg2Si相和Mg3Sb2相组成;加入0.75Sb后形成高熔点的Mg3Sb2相,显著改善了Mg2Si相的形貌,使粗大的骨骼状Mg2Si转变为相对细小的汉字状Mg2Si。铸态合金的硬度HV为65.9,屈服强度为136.4MPa,抗拉强度为172.3MPa,伸长率为3.3%;拉伸断裂形式为准解理脆性断裂。  相似文献   

17.
Effect of manganese addition, which has been known to improve formability during extrusion, on mechanical properties and fatigue strength was investigated to confirm the total performance of the Mn addition to the magnesium alloys. The grain size decreased with increasing Mn content and attained a constant grain size at the Mn contents higher than 0.4 wt%, where the Mn–Al–Mg intermetallic particles were precipitated. The tensile strength and hardness increased with increasing Mn content and attained a constant value at the Mn contents higher than 0.4 wt%, which was consistent with the grain size variation. The fatigue life increased with increasing Mn content and attained a constant value similar to the case of tensile strength. However, the fatigue life was significantly reduced at the Mn content of 0.79 wt%. It is speculated to result from a large number of precipitated intermetallic particles, which would degrade the fatigue crack growth resistance. The magnesium alloys with Mn contents between 0.4 and 0.6 wt% have a good balance of mechanical properties and fatigue strength.  相似文献   

18.
Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (Ecorr) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mVSCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary alloy accompanied by two secondary phases presented higher corrosion resistance compared to binary alloys with single secondary phase. The degradation behaviour demonstrates that Mg–2Ca–0.5Mn–2Zn alloy had the lowest degradation rate among quaternary alloys. In contrast, the binary Mg–2Ca alloy demonstrated higher corrosion rates, with Mg–4Ca alloy having the highest rating. Our analysis showed the Mg–2Ca–0.5Mn–2Zn alloy with suitable mechanical properties and excellent corrosion resistance can be used as biodegradable implants.  相似文献   

19.
为了提高Mg-3Al-0.4Mn合金的常温力学性能,研究了铸态和挤压态下Si含量对AM30合金的组织和力学性能的影响.结果表明,增加Si的添加量会生成粗大的汉字状的Mg2Si相,不利于提高合金的力学性能;但经过挤压后,呈汉字状Mg2Si相破碎,变成颗粒细小的Mg2Si相,晶粒细化,有利于提高合金的性能.  相似文献   

20.
Mn and Zn were selected to develop a Mg–Zn–Mn magnesium alloy for biomedical application due to the good biocompatibility of Zn and Mn elements. Microstructure, mechanical properties, corrosion properties and biocompatibility of the Mg–Zn–Mn alloys have been investigated by use of optical microscope, scanning electron microscope, tensile testing, and blood hemolysis and cell toxicity. Microstructure observation has shown that the addition of Zn and the extrusion significantly refined the grain size of both the as-cast and the extruded magnesium alloys, which mainly contributes to the high tensile strength and good elongation. Polarization test has shown Zn could accelerate the formation of a passivation film, which provides good protection to the magnesium alloy against simulate body fluid. Cell culture and hemolysis tests have shown that the magnesium alloy did not have cell toxicity, showing good cytocompatibility, but the alloy caused hemolysis to blood system. It was suggested that surface modification have to be adopted to improve the blood compatibility of the magnesium alloy for the application in blood environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号