首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this article, the elegant antidisturbance fault‐tolerant control (EADFTC) problem is studied for a class of stochastic systems in the simultaneous presence of multiple heterogeneous disturbances and time‐varying faults. The multiple heterogeneous disturbances include white noise, norm bounded uncertain disturbances and uncertain modeled disturbances with multiple nonlinearities and unknown amplitudes, frequencies, and phases. The time‐varying fault signals are caused by lose efficacy of actuator. To online estimate uncertain modeled disturbances and time‐varying faults, a novel composite observer structure consisting of the adaptive nonlinear disturbance observer and the fault diagnosis observer is constructed. The novel EADFTC strategy is proposed by integrating composite observer structure with adaptive disturbance observer‐based control theory and H technology. It is proved that all the signals of closed‐loop system are asymptotically bounded in mean square under the circumstances of multiple heterogeneous disturbances and time‐varying faults occur simultaneously. Finally, the effectiveness and availability of proposed strategy are demonstrated by means of the numerical simulation and a doubly fed induction generators system simulation, respectively.  相似文献   

2.
Antidisturbance control problem is discussed for stochastic systems with multiple heterogeneous disturbances, which include the white noise and the disturbance with unknown frequencies and amplitudes. An adaptive disturbance observer is designed to estimate the disturbance with unknown frequencies and amplitudes, based on which, an adaptive disturbance observer‐based control scheme is proposed by combining adaptive technique and linear matrix inequality method. It is proved that the closed‐loop system is asymptotically bounded in mean square when multiple heterogeneous disturbances exist simultaneously and that the equilibrium is globally asymptotically stable in probability as additive disturbance disappears. Finally, two simulation examples, including a wind turbine system, are given to show the effectiveness of the proposed scheme.  相似文献   

3.
The existing active disturbance rejection control (ADRC) method may not provide sufficient disturbance rejection to multiple mismatched disturbances for the fractional order systems. In this paper, a composite disturbance rejection approach is developed for a class of fractional order uncertain systems, by synthesizing the fractional order ADRC (FOADRC) approach and a disturbance observer (DO)-based compensation scheme. Taking advantage of more disturbance information and a filter structure, an improved DO is developed to achieve precise estimation of disturbances in the presence of sensor noises. In addition, a state transformation is developed to convert the system into a simple integral chain model with only matched disturbances. Then a composite control law is designed to compensate the disturbances and provide satisfying dynamic performance. The efficiency of the proposed method is demonstrated by a numerical simulation and an actual servo control simulation, as well as the comparison with two kinds of the existing ADRC methods and the commonly used integral sliding mode control (I-SMC) method.  相似文献   

4.
This article studies the simultaneous fault-tolerant control and disturbance rejection for systems with fault in polynomial form. The unknown external disturbance is considered to be caused by the external source system, and the fault can be expressed as a polynomial function of time. Combining the fault observer and the disturbance observer, a controller is designed, which can not only diagnose the fault, but also improve the anti-disturbance performance. Finally, a numerical example is given to verify the validity of the results.  相似文献   

5.
The paper proposes a novel control design for nonlinear systems with multiple uncertainties and nonlinear measurement. The output linearization is utilized to handle the nonlinearities in system dynamics and measurement. Firstly, the integrator chain for nonlinear systems with multiple uncertainties is analyzed. Based on the fundamental integrator chain form, the equivalent total effect of multiple uncertainties is summarized as total disturbance. By timely estimating and compensating for the total disturbance, an active disturbance rejection control design to handle both multiple uncertainties and nonlinear measurement is proposed. Moreover, the transient performance of the corresponding closed‐loop system is rigorously studied, which theoretically reveals the high consistence of the tracking performance despite various multiple uncertainties.  相似文献   

6.
时滞系统的自抗扰控制综述   总被引:1,自引:0,他引:1  
时滞系统的控制一直是具有挑战性的普遍问题, 而自抗扰控制思想近年来被广泛地应用于时滞系统中. 在简要概述自抗扰控制原理的基础上, 介绍了应用自抗扰控制思想解决时滞系统问题的常用设计方法, 总结了自抗扰控制器的参数整定方法. 最后, 对今后的进一步研究进行了展望.  相似文献   

7.
《Journal of Process Control》2014,24(9):1394-1401
Most of industrial processes have dead-time phenomenon that will affect the process performance. Though there are some disturbance rejection methods for the process with dead-time, however, most of them may not work well for multiple periodic disturbance. In this paper, a novel periodic disturbance rejection controller is designed based on the Smith predictor platform for process with long dead-time. By adding two feedback loops and the online spectrum analysis, multiple periodic disturbances can be suppressed effectively in existence of long dead-time. The rigorous analysis is conducted to prove that the robust stability can be maintained. Finally, the effectiveness of the proposed controller is demonstrated in the process simulations and industrial experiment.  相似文献   

8.
多指标约束条件下广义系统的容错控制   总被引:1,自引:1,他引:0  
从更接近于工程应用的角度出发,提出一种多指标约束条件下的广义系统容错控制方案.当系统在某些传感器或执行器故障的条件下,设计一鲁棒容错控制器,利用线性矩阵不等式方法分析了与区域极点指标相容的H∞指标和方差上界指标的取值范围,建立了容错控制中3类指标的相容性理论,并在相容指标约束下给出了有效的控制器设计方法.仿真算例说明了该方法的有效性.  相似文献   

9.
Control of uncertain dynamical systems has been an area of active research for the past several decades and to this end,various robust control approaches have been proposed in the literature. The active disturbance rejection control (ADRC) representsone prominent approach that has been widely studied and applied for designing robust controllers in diverse areas of engineeringapplications. In this work, a brief review of the approach and some of its applications in aerospace are discussed. The resultsshow that the approach possesses immense potential to offer viable solution to reallife aerospace problems.  相似文献   

10.
本文针对带有外部干扰影响的多智能体系统,研究了基于事件触发机制下的多智能体系统Leader-Following一致性的控制问题.采用干扰观测器来估计系统中存在的干扰,并设计了基于事件触发机制的干扰主动控制方案.运用现代控制理论和矩阵论等工具分析了多智能体协同运动算法得到了多智能体系统在分布式事件触发机制下的一致性收敛条件,并且分析了本文设计的分布式事件触发机制的时间间隔存在正的下界.最后通过计算机仿真,验证了本文所提控制算法的有效性.  相似文献   

11.
The article proposes several fault‐tolerant control (FTC) laws for singularly perturbed systems (SPS) with actuator faults and disturbances. One of the main challenges in this context is that the fast‐slow decomposition is not available for actuator faults and disturbances. In view of this, some conditions for the asymptotic stability of the closed‐loop dynamics are investigated by amending the composite Lyapunov approach. On top of this, a closed‐form expression of the upper bound of singular perturbation parameter (SPP) is provided. Moreover, we design several SPP‐independent composite FTC laws, which can be applied when this parameter is unknown. Finally, the chattering phenomenon is eliminated by using the continuous approximation technique. We also emphasize that, for linear SPSs, the FTC design can be formulated as a set of linear matrix inequalities, while the SPP upper bound can be obtained by solving a convex optimization problem. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.  相似文献   

12.
A class of stochastic nonlinear systems with fault and multisource disturbances is concerned. The fault is a general bounded actuator fault, and the multiple disturbances include partial‐known information disturbance and white noise. A stochastic adaptive disturbance observer is constructed to estimate the partial‐known information disturbance, based on which the partial‐known information disturbance can be compensated in the feed‐foreword channel immediately. Also, the multiplicative white noise can be attenuated by the designed feedback controller. To make the composite system is satisfactory, a composite disturbance based‐observer control with fuzzy fault‐tolerant control is proposed. The pole placement and LMI method is applied to attenuate and reject the disturbance. Furthermore, the fault can be compensated simultaneously. To verify the feasibility and availability of the designed control scheme, a simulation example is shown finally.  相似文献   

13.
Guaranteed-cost active disturbance rejection control (ADRC) for uncertain systems is investigated in this study. Firstly, an integral action is introduced in the framework of ADRC to measure and reduce the tracking error. Then, a robust stability condition is presented, and a quadratic cost function where the tracking error is appearing explicitly is used for ADRC performance assessment. The cost bound is formulated by linear matrix inequality and optimised to obtain controller parameters. Full-dimension extended state observer is used, and thus, the proposed strategy is applicable to an uncertain system that allows relative-degree varying or right-half-plane zero. Finally, the validity of the proposed method and its advantages is demonstrated through the simulations of comparative examples and experiments on a motor speed control system.  相似文献   

14.
具有控制时滞系统的最优无静差正弦扰动抑制   总被引:1,自引:0,他引:1  
研究在外部正弦扰动作用下,控制含时滞的线性系统的最优无静差调节器设计问题.首先利用Artstein变换将控制变量含时滞的系统转化为不舍时滞的系统;然后利用内模原理构造扰动补偿器,将带扰动的系统转化为无扰动的增广系统,从而将无静差扰动抑制问题转化为无扰动增广系统的最优调节器设计问题;最后利用最优控制理论求得最优无静差反馈控制律.仿真结果表明了所提出方法的有效性.  相似文献   

15.
This article focuses on the concerns of a tracking control and active disturbance rejection for nonlinear switched systems described by Takagi–Sugeno fuzzy framework with state-dependent nonlinear perturbations, actuator saturations and disturbances. Especially, a nonlinear equivalent-input-disturbance technique is employed to guarantee that only the external disturbances are rejected while retaining the beneficial nonlinearity of the system. Notably, with the aid of the lifting technique, the modified repetitive control are accurately described by a continuous-discrete two-dimensional model is designed to improve the tracking precision. The fuzzy-membership-function-dependent piecewise Lyapunov–Krasovskii functional (LKF) by exploiting the knowledge of the membership functions are built to assure the exponential stability of the investigated system. Moreover, the controller and observer gains can be obtained as solutions to a set of strict linear matrix inequalities. Finally, an application example based on the cognitive radio model is given to verify the efficacy of the proposed control protocol.  相似文献   

16.
谭文  周宏  傅彩芬 《控制理论与应用》2013,30(12):1580-1588
本文研究负荷频率控制系统的线性自抗扰控制(linear active disturbance rejection, LADRC)方法. 考虑负荷频率控制系统的模型及结构, 本文首先通过一仿真例子分析了二阶和三阶LADRC在单区域电力系统的控制性能,指出二阶LADRC在负荷频率控制中的限制. 随后本文针对负荷频率控制中存在的发电速率约束(generation rate constraint, GRC)这一实际问题, 提出一种anti-GRC补偿方案. 该方案将汽轮机理论输出与实际输出误差作为扰动输入, 利用扩张状态观测器进行估计, 从而使LADRC能够快速补偿该误差, 达到抗积分饱和的作用. 最后, 本文将LADRC设计方法推广到具有再热汽轮机和水轮机系统以及多区域电力系统. 仿真表明LADRC是一种独立于模型的普适性控制结构, 所需整定参数少, 能够取得比PID控制更好的抗干扰性能, 可以应用到负荷频率控制系统中.  相似文献   

17.
This paper studies the target aggregation problem for a class of nonlinear multi-agent systems with the time varying interconnection topology. The general neighboring rule-based linear cooperative protocol is developed and a sufficient aggregation condition is derived. Moreover, it is shown that in the presence of agent faults, the target point is still reached by adjusting some weights of the cooperative protocol without changing the structure of the topology. An unmanned aerial vehicle team example illustrates the efficiency of the proposed approach.  相似文献   

18.
In this paper, the problem of robust fault tolerant control for a class of singular systems subject to both time-varying state-dependent nonlinear perturbation and actuator saturation is investigated. A sufficient condition for the existence of a fixed-gain controller is first proposed which guarantees the regularity, impulse-free and stability of the closed-loop system under all possible faults. An optimization problem with LMI constraints is formulated to determine the largest contractively invariant ellipsoid. An adaptive fault tolerant controller is then developed to compensate for the failure effects on the system by estimating the fault and updating the design parameter matrices online. Both of these two controllers are in the form of a saturation avoidance feedback with the advantage of relatively small actuator capacities compared with the high gain counterpart. An example is included to illustrate the proposed procedures and their effectiveness.  相似文献   

19.
本文针对快速路主道交通密度的控制问题,提出了一种新的自抗扰匝道调节方法.该方法包括跟踪微分器(TD)、扩展状态观测器(ESO)和非线性输出误差反馈控制律(NLOEF)3个部分.通过微分跟踪环节安排的过渡过程,可有效降低系统的超调;而系统外部不确定性可通过ESO估计,并将估计信息用于NLOEF更新控制信号.本文分别基于宏观MATLAB和微观PARAMICS平台进行了仿真研究,验证了所提出方法抑制不同类型外部扰动的有效性.  相似文献   

20.
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号