首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Polypropylene was melt blended in a single screw extruder with thermo tropic Vectra B‐950 liquid crystalline polymer (copolyester amide) in different proportions in presence of 2% of EAA, ethylene‐acrylic acid copolymer (based on PP) as a compatibilizer. The mechanical properties of such compatibilized blends were evaluated and compared in respect of their Young's Modulii, Ultimate tensile strength, percent elongation at break, and toughness to those of Pure PP. The Morphology was studied by using a polarizing light microscope (PLM) and Scanning electron microscope (SEM). The Thermal characterization of these blends were carried out by differential scanning calorimeter (DSC).The mechanical properties under dynamic conditions of such compatibilized blends and pure PP were studied by dynamic mechanical analyzer (DMA). Mechanical analysis (Tensile properties) of the compatibilized blends displayed improvements in Modulii and ultimate tensile strength (UTS) of PP matrix with the incorporation of 2–10% of LCP incorporation. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had large influence on the mechanical properties. Differential scanning calorimeter (DSC) studies indicated no remarkable changes in the crystalline melting temperature of the blends with respect to that of pure PP. However, an increase in the softening range of the blends over that of PP was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

4.
《Polymer》1997,38(22):5557-5564
The mechanical properties of self-reinforced liquid crystalline polymer/polypropylene (LCP/PP) blends strongly depend on the viscosity ratio of the blend components in the melt. This ratio was determined for PP blends with different commercial LCPs (Vectra A950 and Vectra B950), by means of capillary rheometry, under conditions representative for the blending process during extrusion. It was found that optimal mechanical properties were achieved when the LCP/PP viscosity ratio at 285°C ranges between 2 and 4 at a shear rate of 800–1000s−1. The LCP/PP viscosity ratio appears to be shear stress dependent. This creates the option of fine tuning the LCP droplet deformation process by means of the extrusion rate. This shear stress dependence is more pronounced for PP blends with Vectra B950 than for blends with Vectra A950.  相似文献   

5.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

6.
Blends of an extrusion‐grade high‐density polyethylene and two liquid crystalline copolyesters (LCP; Vectra A950 and Vectra RD501) were prepared by melt mixing and injection molding, and the morphologies and oxygen permeabilities of the blends were assessed. Scanning electron microscopy revealed that the LCP was present in the blends as mixed oriented bands and small spheres at low LCP contents (4–9 vol%), whereas blends with more than 18 vol% LCP showed LCP lamellae of macroscopic lateral size (mm). Scanning electron microscopy revealed a two‐dimensional continuity of the LCP domains in the disc plane due to radial shear deformation and circumferential stretching of the melt leaving the central gate of the disc‐shaped cavity. The oxygen permeability, diffusivity and solubility decreased with increasing LCP content of the blends. The decrease in permeability with respect to polyethylene was significant (46%–55%) already at 9 vol% LCP. At 27 vol% LCP, the decrease with respect to polyethylene, was 92% for the Vectra A950 blend and 98% for the Vectra RD501 blend. These blends showed a greater decrease in diffusivity (86%–92%) than in solubility (39%–76%) with respect to polyethylene, which showed the very pronounced effect of the LCP lamellae on the geometrical impedance factor. Microvoids were present in all the blends despite the use of a very high injection pressure (180 MPa) but their impact on the oxygen permeability was negligible for the Vectra RD501 blends and relatively small for the Vectra A950 blends.  相似文献   

7.
A liquid crystalline polymer (LCP), Vectra B950, reinforced polycarbonate (PC) 60 wt%/polybutylene terephthalate (PBT) 40 wt% blend was studied using the injection molding process. Morphology and mechanical properties of ternary in situ LCP composites were investigated and compared with binary polycarbonate/Vectra B950 LCP composites. Good in situ fibrillation of LCP was observed in the direct injection-molded LCP composites. Preliminary results of this work indicate that addition of PBT improves skin-core distribution of LCP microfibrils in the matrix and also enhances adhesion between the matrix and Vectra B950, which contains terephthalic acid. The PC/PBT/LCP ternary system also exhibits lower viscosity than the PC/PBT blend and pure LCP. In a ternary system with 30 wt% of Vectra B950, tensile modulus and strength increase approximately threefold and twofold, respectively. The rule of mixtures (ROM) for continuous reinforcement can accurately represent the strengthening effects for the ternary LCP in situ composites. Generally, LCP reduces the ductility and impact strength of the thermoplastic blends; however, the relative loss is less in the ternary system than in the binary system.  相似文献   

8.
Polypropylene-liquid crystalline polymer (PP/LCP) and maleic anhydride compatibilized PP/LCP blends were prepared using the extrusion technique followed by injection molding. The LCP employed was Vectra A950 which consists of 25 mol % of 2,6-hydroxynaphthoic acid and 75 mol % of p-hydroxybenzoic acid. The rheology, morphology, and impact behavior of compatibilized PP/LCP blends were investigated. The rheological measurements showed that the viscosity of LCP is significantly higher than that of the PP at 280°C. This implied that the viscosity ratio of the LCP to the polymer matrix is much larger than unity. Scanning electron microscopy (SEM) observations revealed that the LCP domains are dispersed mainly into elongated ellipsoids in the PP/LCP blends. However, fine fibrils with large aspect ratios were formed in the compatibilized PP/LCP blends containing LCP content ≥ 10 wt %. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had a large influence on the mechanical properties. The Izod impact strength of the PP/LCP blends showed little dependence on the LCP concentrations. On the other hand, the impact strength of the compatibilized PP/LCP blends was dependent on the LCP concentrations. The correlation between the LCP fibrillar morphology and spherulitic structure with the impact properties of the compatibilized PP/LCP blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 521–530, 1998  相似文献   

9.
In situ composite fibers based on poly(ethylene 2,6‐naphthalate) (PEN) and a thermotropic liquid crystalline polymer (Vectra A950) were prepared using a single‐screw extruder. The fibers were taken up at selected speeds. The spinnability, thermal behavior, mechanical properties, and morphologies of the PEN/Vectra A950 blend were investigated. The results showed that the PEN/Vectra A950 blends were partly miscible, and the miscibility increased with the increased concentration of Vectra in the blend. The DSC measurements indicated that Vectra enhanced the crystallization process of PEN by performing as a nucleating agent. The Instron tensile property study, coupled with scanning electron microscopy, revealed that the mechanical properties of the PEN matrix were significantly improved when Vectra existed as long and continuous fibrils. The laser Raman results showed that the Vectra orientation began to develop at take‐up speeds above 500 m/min. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 795–811, 2002  相似文献   

10.
Liquid crystalline polymer–polyamide‐6 (LCP/PA6) composites containing 20 wt % LCP content were compatibilized by a random styrene–maleic anhydride copolymer (RSMA). The blending was performed via extrusion followed by injection molding. The LCP employed was a commercial copolyester, Vectra A950. The dynamic mechanical (DMA), rheological, thermal, and mechanical properties as well as the morphology of the composites were studied. The DMA and rheological results showed that RSMA is an effective compatibilizer for LCP/PA6 blends. The mechanical measurements showed that the stiffness, tensile strength, and toughness of the in situ composites are generally improved with increasing RSMA content. However, these mechanical properties deteriorated considerably when RSMA content was above 10 wt %. The drop‐weight dart impact test was also applied to analyze the toughening behavior of these composites. The results show that the maximum impact force (Fmax) and crack‐initiation energy (Einit) tend to increase with increasing RSMA content. From these results, it appeared that RSMA prolongs the crack‐initiation time and increases the energies for crack initiation and impact fracture, thereby leading to toughening of LCP/PA6 in situ composites. Finally, the correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1964–1974, 2000  相似文献   

11.
Ternary in situ polycarbonate (PC)/poly(acrylonitrile‐butadiene‐styrene) (ABS)/liquid crystalline polymer(LCP) composites were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix of composite specimens was PC/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these composites. The tensile, dynamic mechanical, impact, morphology, and thermal properties of the composites were studied. Tensile tests showed that the tensile strength of the PC/ABS/LCP composite in the longitudinal direction increased markedly with increasing LCP content. However, it decreased slowly with increasing LCP content in the transverse direction. The modulus of this composite in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PC/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the composites in both longitudinal and transverse direction decreased with increasing LCP content up to 15 wt %; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the composites tended to increase with increasing LCP content. Scanning electron microscopy observation and DMA measurement indicated that the additions of epoxy and MA copolymer to PC/ABS matrix appeared to enhance the compatibility between the PC and ABS, and between the matrix and LCP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2274–2282, 1999  相似文献   

12.
The mechanical properties, melt rheology, and morphology of binary blends comprised of two polypropylene (PP) grades and two liquid crystalline polymers (LCP) have been studied. Compatibilization with polypropylene grafted with maleic anhydride (PP-g-MAH) has been attempted. A moderate increase in the tensile moduli and no enhancements in tensile strength have been revealed. Those findings have been attributed to the morphology of the blends, which is predominantly of the disperse mode. LCP fibers responsible for mechanical reinforcement were only exceptionally evidenced. Discussion of PP-LCP interfacial characteristics with respect to mechanical properties-morphology interrelations allowed evaluation of the compatibilizing efficiency of PP-g-MAH. Factors important for successful reinforcement of PP with LCP have been specified. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 969–980, 1997  相似文献   

13.
The microstructures, mechanical properties, and fracture toughness of LCP (Vectra B950) reinforced PC/PBT blend with a 60/40 weight ratio have been studied. LCP of varying concentrations were investigated as rigid fillers in matrices of multiphase polymer blends. In this study, differences in microstructures and morphology between samples of two thicknesses (4 mm thick and 6 mm thick) and two geometries (dumbbell and rectangular) were compared using scanning electron microscopy (SEM). Given identical processing conditions, fibrous LCP structures were evident in the 4-mm-thick injection molded, dumbbell-shaped samples, whereas the 6-mm-thick rectangular samples displayed spherical dispersion of LCP aggregates that embrittled the preblended ductile matrix. Tensile properties of the dumbbell specimens showed superior strengthening and stiffening whereby the tensile strength increased twofold and the modulus increased fourfold. Plane strain fracture toughness was slightly enhanced as the LCP content increased because of the fiber strengthening effect but the overall fracture performance of the in situ composites was relatively poor compared with PC/PBT. Experimental results were compared with those predicted in composite theory. Simplified micromechanics equations were developed to describe the tensile moduli of injection molded LCP reinforced blends that exhibited a strong skin-core morphology.  相似文献   

14.
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Isotactic polypropylene (PP) has been blended with poly(ethylene-co-methyl acrylate) (EMA) (75/25 wt/wt%) in a single-screw extruder. The compatibilizing effect of polypropylene grafted with maleic anhydride (PP-g-MAH) has been examined. The nonisothermal crystallization of the developed blends has been investigated using differential scanning calorimetry (DSC) and analyzed using Avrami, Tobin and Liu models. The thermal stability of the blends was assessed through thermogravimetric analysis (TGA). The tensile and impact properties, as well as the melt viscosity, have also been determined. The presence of rubber accelerates the crystallization of PP. The thermal stabilities of the blends are intermediate between those of their constituents. Tensile strength and modulus are reduced upon incorporation of EMA into PP, but ultimate elongation and impact strength are improved. The melt viscosity variation with shear rate for all the systems was typical of shear-thinning behavior. The compatibilizing agent has a pronounced effect on enhancing the thermal and mechanical properties of the blend.  相似文献   

16.
Ternary blends of polypropylene (PP), a polypropylene‐grafted acrylic acid copolymer (PP‐g‐AA), and an ethylene–acrylic acid copolymer (EAA) were prepared by melt blending. The surfaces of films with different contents of these three components were characterized with contact‐angle measurements. Scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis were used to characterize the microstructure, melting and crystalline behavior, and thermal stability of the blends. The contact angles of the PP/PP‐g‐AA blends decreased monotonically with increasing PP‐g‐AA content. With the incorporation of EAA, the contact angles of the PP/PP‐g‐AA/EAA ternary blends decreased with increasing EAA content. When the concentration of EAA was higher than 15 wt %, the contact angles of the ternary blends began to increase. Scanning electron microscopy observations confirmed that PP‐g‐AA acted as a compatibilizer and improved the compatibility between PP and EAA in the ternary blends. Differential scanning calorimetry analysis suggested that acrylic acid moieties could act as nucleating agents for PP in the polymer blends. Thermogravimetric analysis and differential thermogravimetry confirmed the optimal blend ratio for the PP/PP‐g‐AA/EAA ternary blends was 70/15/15. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 436–442, 2006  相似文献   

17.
Biodegradable conductive polymer blends made from poly(lactic acid) (PLA), liquid natural rubber (LNR) and polyaniline (PANI) were prepared via a melt‐blending technique assisted by ultrasonic treatment. The effects of PANI at low loading (0.03 to 0.11 wt%) on the electrical conductivity and mechanical, thermal and physical properties of PLA/LNR/PANI blends were investigated. It was found that the mechanical properties of samples improved when PANI was introduced into PLA/LNR. Tensile results showed that the optimum loading of PANI was achieved at 0.07 wt% with an improvement of 8% in tensile strength compared to neat PLA/LNR. Although it was at low loading, the incorporation of PANI promoted an outstanding electrical conductivity to PLA/LNR blends. Thermal analysis of the PLA/LNR/PANI blends was conducted using differential scanning calorimetry and thermogravimetry. The thermal stabilities of the blends were improved markedly with the presence of PANI. Comparing to PLA/LNR, the incorporation of PANI component improved the resistance towards water absorption. Variable‐pressure scanning electron microscopy micrographs of PLA/LNR/PANI confirmed the good mixing of PANI with PLA/LNR and strong interaction networks among the PANI, PLA and LNR components. © 2018 Society of Chemical Industry  相似文献   

18.
采用熔融共混的方法,制备了聚丙烯(PP)/回收聚对苯二甲酸乙二酯(r-PET)共混物,研究了增容剂甲基丙烯酸缩水甘油酯接枝聚丙烯(PP-g-GMA)对共混物力学性能、热稳定性的影响。结果表明:增容剂的加入能提高共混物的拉伸强度和拉伸模量;加入增容剂能显著提高共混物的热分解温度,增容剂使r-PET的熔点降低;增容剂对PP的结晶性能影响与熔融温度有关。  相似文献   

19.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

20.
The rheology, morphology and properties of the composite systems of LCP, Vectra ATM 950 and Nylon 66 were investigated. The viscocity ratio of LCP and matrix has strong influence on their morphology. For LCP blends, the viscosity ratio of LCP is a critical factor in determining the blend morphology. The optical micrographs show that the good fibrillation can be achieved when the viscocity of the dispersed LCP phase is less than that of the Nylon 66 matrix at 310°C. The dispersed LCP domains tend to be spherical or cluster‐like when the viscosity ratio of the disperesed LCP phase and the Nylon 66 matrix is more than 1 at 280°C. The scanning electron microscopy (SEM) and optical micrograph observations show that Nylon 66 is immiscible with LCP, and there are two distinct phases in the blends. The morphology of LCP phase changes with the composition. LCP exhibits a fine fibril dispersed phase in the Nylon 66 matrix in the low LCP concentration. With an increase in LCP concentration, the morphology of LCP phase is changed form a fine fibril dispersed phase to a perfectly aligned continuous fiber reinforced phase in the rich LCP concentration. The tensile moduli increase with LCP concentration, especially in the rich LCP concentration. The tensile strengths increase with LCP concentration only when LCP concentration is above 40 wt%. Compared to the pure Nylon 66 fiber, the 40 wt% LCP composite sample shows a 982.1% increase in tensile modulus and a 123.3% increase in tensile strength. The mechanical properties of composite fibers are below the rule of mixtures if the LCP concentration is low, but above the rule of mixtures if the LCP concentration is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号