首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
介绍了自由空间光通信中的相干通信系统,通过对相干光通信中振幅键控(ASK),频移键控(FSK),相移键控(PSK),差分相移键控(DPSK)四种光载波相干调制方式性能的分析和比较,仿真结果得出PSK调制误码性能更好,提出了一种光载波外差差分相移键控(DPSK)系统.  相似文献   

2.
Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi carrier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are investigated for quadrature phase shift keying (QPSK), 8 phase shift keying (8PSK) and 16-quadrature amplitude modulation (16-QAM) optical coherent systems, respectively. The simulation results show that the optimal block length in the phase estimation algorithm is a tradeoff between LPN and additive white Gaussian noise (AWGN), and depends on the level of modulation formats. The resolution requirements of analog to digital converter (ADC) in the coherent receivers are independent of LPN or the level of modulation formats. For the bit error rate (BER) of 10-3, the required bit number of ADC is 6, and the gain is marginal for the higher resolution.  相似文献   

3.
This paper shows the trade off between different modulation techniques such as multi level quadrature amplitude modulation, multi level phase shift keying, and multi level differential phase shift keying for upgrading direct detection optical orthogonal frequency division multiplexing systems with possible transmission distance up to 15,000 km and total bit rate of 2.56 Tb/s. The 2.56 Tb/s signal is generated by multiplexing 64 OFDM signals with 40 Gb/s for each OFDM. Variations of optical signal to noise ratio (OSNR), signal to noise ratio (SNR), and bit error rate (BER) are studied with the variations of transmission distance. Maximum radio frequency power spectrum, and output electrical power after decoder are measured for different multi level modulation techniques with carrier frequency. It is observed that multi level QAM has presented better performance than multi level PSK and finally multi level DPSK in optical OFDM systems. Maximum output power after decoder is enhanced with both 32-PSK, and 64-QAM. Quadrature signal amplitude level at encoder is upgraded with 64-QAM. It is noticed that OSNR, SNR, and BER are improved using 4-QAM OFDM system than either QPSK or 4-DPSK.  相似文献   

4.
Coherent optical fiber communications for data rates of 100 Gbit/s and beyond have recently been studied extensively because high sensitivity of coherent receivers could extend the transmission distance. Spectrally efficient modulation techniques such as M-ary phase shift keying (PSK) can be employed for coherent optical links. The integration of multi-level modulation formats based on coherent technologies with wavelength-division multiplexed (WDM) systems is vital to meet the aggregate bandwidth demand. This paper reviews coherent quadrature PSK (QPSK) systems to scale the network capacity and maximum reach of coherent optical communication systems to accommodate traffic growth.  相似文献   

5.
6.
深入研究了差分八相移键控(I)8PSK)j幅移键控(AsK)正交调制格式的机理,提出了一种基于D8PsKjASK正交调制的新型光标记方案,利用D8PSK作为载荷的调制方式,ASK作为标记的调制方式,仿真实现了载荷120Gb/s、标记10Gb/s的传输速率。分析了信号的消光比(ER)对误码率(BER)的影响,仿真结果表明...  相似文献   

7.
利用偏振复用四相相移键控(PM-QPSK)调制技术和相干检测技术,实现40/100 Gb/s光模块的长距离传输。基于相干检测的偏振复用四相相移键控调制格式是40/100 Gb/s长距离传输的主要研究方向,与直接检测系统相比,相干检测具有更高的频谱效率。现有的相干检测是基于高速模数转换器(ADC)的快速发展,ADC对混频后的基带信号采样,通过数字信号处理(DSP)芯片数字均衡的方式完成相干接收。数字信号处理芯片数字均衡的方式可以实现定时恢复、信号恢复、偏振和偏振模色散(PMD)跟踪,以及色散补偿。  相似文献   

8.
We present optical transmission systems employing minimum shift keying modulation formats of single and dual-amplitude level under linear, weakly nonlinear, strongly nonlinear variation of the lightwave carrier within a bit-period depending on whether the phase variation within a symbol period is linear or nonlinear. These formats are externally modulated, incoherently and differentially detected based on the Mach-Zehnder delay interferometric optical balanced receiver. Transmission performance of these optical transmission systems is evaluated in terms of receiver sensitivity, amplification stimulated emission noise loading, dispersion tolerances. These performance characteristics are compared with return-to-zero (RZ) differential phase shift keying (DPSK) and carrier-suppressed RZ on-off keying modulation formats. Accurate bit-error ratios are obtained and confirmed by different statistical techniques: Monte Carlo, single-Gaussian or multiple Gaussian distributions and generalized Pareto distribution statistical methods, especially when the eye diagrams are distorted. Among the three minimum shift keying (MSK) types, the weakly nonlinear optical MSK is found to be the most promising because of its robust transmission performance and more importantly, its reduced-complexity of the electrical driving signals for transmitter in modulating the lightwave carrier as compared to the linear MSK counterpart. Transmission performance of dual-level MSK optical transmission systems depends on the intensity-splitting ratio of the two levels. The performance of three ratios: 0.7/0.3,0.8/0.2, and 0.9/0.1 are demonstrated. The spectral attributes of 80 Gb/s dual-level MSK optical signals for these three ratios are similar to each other and compatible with that of 40 Gb/s optical MSK, but narrower than that of 40 Gb/s optical nonreturn-to-zero DPSK, hence high spectral efficiency of the dual-level MSK.  相似文献   

9.
Orthogonal amplitude shift keying/differential phase-shift keying (ASK/DPSK) labeling is a promising approach to ultrahigh packet-rate routing and forwarding in the optical layer. However, the limitation on the payload extinction ratio (ER) is a detrimental effect for network scalability and transparency. This paper presents theoretical and experimental studies of ASK/DPSK labeling. It proposes that dc-balanced 8B10B coding can greatly improve ER tolerance, which in turn leads to better system performance. By using the 8B10B coding method, the paper demonstrates transmission and optical label swapping for a 40 Gb/s ASK payload and a 2.5 Gb/s DPSK label with an overall power penalty of 3.3 dB for the payload and 0.3 dB for the label. The experimental results also show that the ER is allowed to be as high as 12 dB.  相似文献   

10.
This paper proposes a novel duobinary-mode-splitting scheme that uses wideband phase-shift-keying (PSK)/amplitude-shift-keying (ASK) conversion for modulation and detection of bandwidth-reduced return-to-zero (RZ) modulation formats. We have first demonstrated that the proposed scheme greatly simplifies the modulation process of the duobinary carrier-suppressed RZ format (DCS-RZ) based on baseband binary nonreturn-to-zero (NRZ) modulation. We also proposed carrier-suppressed RZ differential-phase-shift-keying format (CS-RZ DPSK) as a novel bandwidth-reduced RZ format by applying the proposed scheme in the detection process. These novel RZ formats are shown to be very useful for dense wavelength-division multiplexed (DWDM) transport systems using high-speed channels, over 40 Gb/s, with spectrum efficiencies higher than 0.4 b/s/Hz. We demonstrate that the proposed modulation and detection scheme greatly simplifies the DWDM transmitter and receiver configuration if the periodicity of the optical PSK/ASK conversion filter equals the WDM channel spacing. The large tolerance of the formats against several fiber nonlinearities and their wide dispersion tolerance characteristics are tested at the channel rate of 43 Gb/s with 100-GHz spacing. The novel CS-RZ DPSK format offers higher nonlinearity tolerance against cross-phase modulation than does the DCS-RZ format.  相似文献   

11.
This paper describes a coherent optical receiver for demodulating optical quadrature phase-shift keying (QPSK) signals. At the receiver, a phase-diversity homodyne detection scheme is employed without locking the phase of the local oscillator (LO). To handle the carrier phase drift, the carrier phase is estimated with digital signal processing (DSP) on the homodyne-detected signal. Such a scheme presents the following major advantages over the conventional optical differential detection. First, its bit error rate (BER) performance is better than that of differential detection. This higher sensitivity can extend the reach of unrepeated transmission systems and reduce crosstalk between multiwavelength channels. Second, the optoelectronic conversion process is linear, so that the whole optical signal information can be postprocessed in the electrical domain. Third, this scheme is applicable to multilevel modulation formats such as M-array PSK and quadrature amplitude modulation (QAM). The performance of the receiver is evaluated through various simulations and experiments. As a result, an unrepeated transmission over 210 km with a 20-Gb/s optical QPSK signal is achieved. Moreover, in wavelength-division multiplexing (WDM) environment, coherent detection allows the filtering of a desired wavelength channel to reside entirely in the electrical domain, taking advantage of the sharp cutoff characteristics of electrical filters. The experiments show the feasibility to transmit polarization-multiplexed 40-Gb/s QPSK signals over 200 km with channel spacing of 16 GHz, leading to a spectral efficiency as high as 2.5 b/s/Hz.  相似文献   

12.
Orthogonal ASK/DPSK labeling, which encodes label information on optical carriers in a modulation format, is regarded as a competing scheme to subcarrier multiplexed optical labeling. However, the inherent cross-talk limits the extinction ratio (ER) of the payload and label sensitivity. In this paper, two optical coding methods-Manchester coding and 8B10B coding-which can remarkably improve the system quality to obtain acceptable ER are discussed. A novel optical packet encoding methodmark-insertion coding-is demonstrated to significantly reduce cross-talk between the amplitude shift keying ASK) payload and the differential phase shift keying (DPSK) label through spectrum shaping. The performance of mark-insertion coding depends on the number of inserted 'marks'. Finally, the transmission over a 40 km single mode fiber (SMF) is compared with optical label swapping for a. 40 Gbit/s ASK payload and 2.5 Gbit/s DPSK label under these coding schemes. The experimental result is consistent with the theoretical analysis.  相似文献   

13.
申静  李俊奇 《激光技术》2019,43(5):641-645
为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。  相似文献   

14.
Phase diversity (PD) receivers are an elegant option to handle the phase noise at homodyne detection and are especially interesting when used as wideband tunable wavelength-division multiplexing receivers. In the late 1980s and early 1990s, they were proposed and investigated for binary modulation formats (amplitude-shift keying, differential phase-shift keying, and frequency-shift keying). In this paper, a homodyne PD receiver for differential quadrature phase shift keying (DQPSK) modulation is analyzed, which provides a promising alternative to presently investigated DQPSK-direct-detection receivers and homodyne receivers with digital phase estimation.  相似文献   

15.
We present a new optical modulation format chirp-free return-to-zero differential phase shift keying (CF-RZ-DPSK), which enables wavelength-division-multiplexing (WDM) transmission at 10 Gb/s/ch at a channel spacing of 100 GHz over 3000 km without significant impairments due to cross-phase modulation (XPM). A transmitter setup is presented, which allows a simple implementation of CF-RZ-DPSK with two Mach-Zehnder modulators in push-pull operation. The robustness toward XPM is shown theoretically with the help of a simple analytical model for the XPM-induced phase modulation. The superior performance of CF-RZ-DPSK over other modulation formats [RZ-ampfitude shift keying (ASK), nonreturn-to-zero (NRZ)-DPSK, and NRZ-ASK, respectively] is clarified. Finally, simulation results for CF-RZ-DPSK in comparison to RZ-ASK show the superior performance of the newly proposed modulation format in a dense WDM setup  相似文献   

16.
This paper has deeply investigated the performance signature of modulation techniques based low earth orbit (LEO)/medium earth orbit (MEO) intersatellite optical wireless communication systems for possible communication coverage distance of 20 000 km with possible transmission bit rate of 0.5 Tb/s. These modulation techniques that are namely multilevel quadrature amplitude modulation (M‐QAM), multilevel phase shift keying (N‐PSK), multilevel pulse amplitude modulation (H‐PAM), and finally multilevel differential phase shift keying (L‐DPSK) based on different electrical pulse generators for upgrading LEO/MEO intersatellite link operation efficiency. These pulse generators that are namely Gaussian pulse generator (GPG), hyperbolic secant pulse generator (HSPG), and raised cosine pulse generator (RCPG). The variations of maximum Q‐factor, minimum bit error rate (BER), and optical signal‐to‐noise ratio in relation to number of bits/symbol for different modulation techniques can be deeply studied in the presence of vertical cavity surface emitting laser (VCSEL). This study is done with using Optiwave system simulation version 7 for different modulation techniques, and all figures are sketched with using wizard Excel sheet set up. It is observed that maximum Q‐factor and minimum BER are optimized with using GPG and 8‐PAM, as well as 4‐DPSK with both HSPG and RCPG.  相似文献   

17.
Differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) are touted as performers and reliable advanced modulation formats for next-generation optical transmission systems. One key device enabling such systems is the delay interferometer, converting the signal phase information into intensity modulation to be detected by the photodiodes. We developed an all-fiber delay-line interferometer for DPSK and DQPSK demodulation in the S-, C-, and L-band with low insertion loss, low-birefringence, and greater than 30 dB of extinction ratio over 100 nm and 20 dB from 1460 to 1640 nm in a single device. The device also features insensitivity to mechanical vibration, very low port imbalance (0.1 dB), and very low time delay between all outputs (0.1 ps). The device is highly reliable with a demonstrated failure-in-time rate of less than 100.  相似文献   

18.
We discuss the relative performance of coherent phase-shift keying (PSK), differential PSK (DPSK), and double differential PSK (DDPSK) modulation schemes over a mobile radio channel in which transmission is affected by additive noise, a constant carrier phase offset, a constant Doppler frequency shift, and correlated Rice fading. We first compare the performance of these schemes to assess the amount of degradation caused on each one of them by fading. Among our findings, we observe that DDPSK turns out to be less sensitive to the effects of correlated fading than the other two schemes and that in these conditions interleaving may not be beneficial. We then consider the introduction of trellis-coded modulation (TCM). The system we advocate as offering the best tradeoff between performance and complexity with the channel model assumed here includes double-differential encoding, differential detection, an open-loop Doppler phase tracking circuit, and differential decoding in addition to a simple TCM scheme  相似文献   

19.
A DCF (dual carrier filter) reverse-modulation-type carrier recovery circuit is proposed to achieve a low carrier skipping rate and satisfactory phase tracking performance for coherent detection of PSK (phase shift keying) signals in fast Rician fading channels. The proposed scheme employs both narrow and wide bandwidth carrier filters simultaneously for the reverse-modulation-type carrier recovery circuit. It is clarified by computer simulation that the Pe performance of a QPSK (quadriphase shift keying) modem employing the proposed scheme shows an improvement of 1.5 dB in required Es/NO at Pe=104 (after Viterbi decoding (R=7/8, K=7), C/M (direct-to-multipath signal power ratio)=10 dB, interleaving size=64×64), compared with conventional coherent detection employing the reverse modulation tank-limiter scheme or the Costas loop scheme  相似文献   

20.
We have investigated the wavelength conversion techniques for differential phase-shift keying (DPSK) modulation formats in 10 Gb/s transmission systems, compared with the non-return-to-zero (NRZ) modulation format. For the wavelength conversion of DPSK modulation formats, we employed the wavelength converters based on the four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) and the frequency comb generated by phase modulation. The power penalty at 10/sup -9/ bit error rate was used as a measure of the system performance degraded by the wavelength conversion. Our simulation results show that the DPSK modulation formats have a smaller power penalty than the NRZ modulation format for the wavelength conversion using the FWM effect in an SOA due to a much lower pattern effect. However, as the wavelength conversion uses the frequency comb generated by phase modulation, it has a similar power penalty compared with the NRZ modulation format. It is also shown that the DPSK modulation formats are possible to obtain the power penalty less than 0.4 dB for both wavelength conversion techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号