首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single‐walled carbon nanotubes (SWNTs) are a promising material for future nanotechnology. However, their applications are still limited in success because of the co‐existence of metallic SWNTs and semiconducting SWNTs produced samples. Here, electrochemical etching, which shows both diameter and electrical selectivity, is demonstrated to remove SWNTs. With the aid of a back‐gate electric field, selective removal of metallic SWNTs is realized, resulting in high‐performance SWNT field‐effect transistors with pure semiconducting SWNT channels. Moreover, electrochemical etching is realized on a selective area. These findings would be valuable for research and the application of SWNTs in electrochemistry and in electronic devices.  相似文献   

2.
Polymer wrapped single‐walled carbon nanotubes (SWNTs) have been demonstrated to be a very efficient technique to obtain high purity semiconducting SWNT solutions. However, the extraction yield of this technique is low compared to other techniques. Poly‐alkyl‐thiophenes have been reported to show higher extraction yield compare to polyfluorene derivatives. Here, the affinity for semiconducting SWNTs of two polymers with a backbone containing didodecylthiophene units interspersed with N atoms is reported. It is demonstrated that one of the polymers, namely, poly(2,5‐dimethylidynenitrilo‐3,4‐didodecylthienylene) (PAMDD), has very high semiconducting SWNT extraction yield compared to the poly(3,4‐didodecylthienylene)azine (PAZDD). The dissimilar wrapping efficiency of these two polymers for semiconducting SWNTs is attributed to the interplay between the affinity for the nitrogen atoms of the highly polarizable walls of SWNTs and the mechanical flexibility of the polymer backbones. Photoluminescence (PL) measurements demonstrate the presence of metallic tubes and SWNT bundles in the sample selected with PAZDD and higher purity of SWNT‐PAMDD samples. The high purity of the semiconducting SWNTs selected by PAMDD is further demonstrated by the high performance of the solution‐processed field‐effect transistors (FETs) fabricated using a blade coating technique, which exhibit hole mobilities up to 33.3 cm2 V?1 s?1 with on/off ratios of 106.  相似文献   

3.
Single‐walled carbon nanotubes (SWCNTs) exhibit outstanding properties that make them appealing in a wide range of applications. However, their properties are variable depending on the tube helicity (chirality), which has been a challenge for a long time and needs to be effectively controlled. In recent years, tremendous efforts have been made to control the electrical type/chirality of nanotubes through both direct controlled synthesis and postsynthesis separation methods. Driven by these breakthroughs, the applications of separated families of SWCNTs in various fields have emerged as a new topic of research. In this Review, an overview of recent advances in the use of highly purified and well‐separated SWCNTs in a comprehensive range of applications is presented including photovoltaics, transistors, batteries, sensors, light emitters, biological/medical fields, and others. Finally, important future directions for the utilization of separated SWCNTs in these fields are provided.  相似文献   

4.
Changes in resistivity of serpentine single‐walled carbon nanotubes are presented as a function of bending radius, rb, in the range of 100–2000 nm. Resistivity (ρ) is observed to increase with curvature (1/rb), which is consistent with theoretical speculation on strain‐induced bandgap increment. Furthermore, a sharp bend (rb < 50nm) in the nanotubes results in a drastic change in the field‐effect behavior, i.e., from ambipolar to p type across the bend. Local Raman spectra show that the G‐band Raman frequencies shift along the curvature, which may be attributed to local deformation and broken cylindrical symmetry in the nanotubes. The results suggest the possibility to tune the electrical properties by bending nanotubes and to build an all‐nanotube device by modulating the structure of the same tube.  相似文献   

5.
We review quantum‐chemical studies of the excited‐state electronic structure of finite‐size semiconducting single‐walled carbon nanotubes (SWCNTs) using methodologies previously successfully applied to describe conjugated polymers and other organic molecular materials. The results of our simulations are in quantitative agreement with available spectroscopic data and show intricate details of excited‐state properties and photoinduced vibrational dynamics in carbon nanotubes. We analyze in detail the nature of strongly bound first and second excitons in SWCNTs for a number of different tubes, emphasizing emerging size‐scaling laws. Characteristic delocalization properties of excited states are identified by the underlying photoinduced changes in charge densities and bond orders. Due to the rigid structure, exciton–phonon coupling is much weaker in SWCNTs compared to typical molecular materials. Yet we find that, in the ground state, a SWCNT's surface experiences the corrugation associated with electron–phonon interactions. Vibrational relaxation following photoexcitation reduces this corrugation, leading to a local distortion of the tube surface, which is similar to the formation of self‐trapped excitons in conjugated polymers. The calculated associated Stokes shift increases with enlargement of the tube diameters. Such exciton vibrational phenomena are possible to detect experimentally, allowing for better understanding of photoinduced electronic dynamics in nanotube materials.  相似文献   

6.
A microwave‐induced controlled method for the purification of single‐walled carbon nanotubes (SWCNTs) by removing residual metal catalysts and carbonaceous impurities is reported. Compared to conventional strong acid treatment, this one‐step method uses dilute acids and complexing agents and reduces the reaction times to the order of minutes. Furthermore, the SWCNTs retain their chemical and physical properties and are not functionalized. Electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption (AA) spectrometry studies were used to characterize the purified SWCNTs.  相似文献   

7.
The insertion of organometallic molecules into the hollow core of single‐walled carbon nanotubes can drastically change their properties. Using biocompatible standardized suspensions of pristine, opened, and filled nanotubes, a very selective enhancement of the photoluminescence and optical absorption is observed. Via ferrocene encapsulation, the PL signal increases almost by a factor of three for tubes with chiralities such as (8,6) and (9,5). This behavior is attributed to a local electron charge transfer from the ferrocene molecules that balances out the p‐type doping of the nanotubes resulting from the modified charge distribution of the surfactant molecules and the opening process. The near infrared photoluminescence of the nanotubes in solution is strongly enhanced when ferrocene is encapsulated. The diameter‐dependent charge transfer is additionally confirmed by first principles calculations. These findings highlight an essential ingredient to optimize the application of solvated nanotubes, for instance, as in–vivo near infrared sensors in biomedical research.  相似文献   

8.
In this work, room‐temperature‐operated ultrasensitive solution‐processed perovskite photodetectors (PDs) with near infrared (NIR) photoresponse are reported. In order to enable perovskite PDs possessing extended NIR photoresponse, novel n‐type low bandgap conjugated polymer, poly[(N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalene diimide‐2,6‐diyl) (2,5‐dioctyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5,5′‐diyl)] (NDI‐DPP), which has strong absorption in the NIR region, is developed and then employed in perovskite PDs. By the formation of type II band alignment between NDI‐DPP with single‐wall carbon nanotubes (SWCNTs), the NIR absorption of NDI‐DPP is exploited, which contributes to the NIR photoresponse for the perovskite PDs, where perovskite is incorporated with NDI‐DPP and SWCNTs as well. In addition, SWCNTs incorporated with perovskite active layer can offer the percolation pathways for high charge‐carrier mobility, which tremendously boosts the charge transfer in the photoactive layer, and consequently improves the photocurrent in the visible region. As a result, the perovskite PDs exhibit the responsivities of ≈400 and ≈150 mA W?1 and the detectivities of over 6 × 1012 Jones (1 Jones = 1 cm Hz1/2 W?1) and over 2 × 1012 Jones in the visible and NIR regions, respectively. This work reports the development of perovskite PDs with NIR photoresponse, which is terrifically beneficial for the practical applications of perovskite PDs.  相似文献   

9.
Monochiral single-walled carbon nanotubes (SWCNTs) are promising materials with potential applications in 3D integrated circuits and optoelectronic hybrid circuits. However, the purity and device performance of monochiral SWCNTs are still far lower than expected. Here, the authors demonstrate that specific monochiral SWCNTs can be wrapped by conjugated polymers containing pyridine units, and the supramolecular assemblies show surprising suspension stability even after high-intensity ultracentrifugation. Additionally, two novel methods are developed, namely, enhanced ultracentrifugation (E-UCG) and stepwise extraction processing (STEP), which successfully achieve isolation of (10,8) and (12,5) SWCNTs with respective diameters of 1.24 and 1.2 nm at high monochiral purity (92.3% and 95.6%). Their S11 absorption and fluorescence emission peaks are both at ≈1.5 µm (optical telecommunications C-band). Both micro- and nanoscale field-effect transistor (FET) devices can be fabricated from the as-isolated (10,8) SWCNTs, and these FETs exhibit excellent electrical performance and a high semiconducting purity of up to 99.94%.  相似文献   

10.
Sorting of semiconducting single‐walled carbon nanotubes (SWNTs) by conjugated polymers has attracted considerable attention recently because of its simplicity, high selectivity, and high yield. However, up to now, all the conjugated polymers used for SWNT sorting are electron‐donating (p‐type). Here, a high‐mobility electron‐accepting (n‐type) polymer poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) is utilized for the sorting of high‐purity semiconducting SWNTs, as characterized by Raman spectroscopy, dielectric force spectroscopy and transistor measurements. In addition, the SWNTs sorted by P(NDI2OD‐T2) have larger diameters than poly(3‐dodecylthiophene) (P3DDT)‐sorted SWNTs. Molecular dynamics simulations in explicit toluene demonstrate distinct linear or helical wrapping geometry between P(NDI2OD‐T2) and different types of SWNTs, likely as a result of the strong interactions between the large aromatic core of the P(NDI2OD‐T2) backbone and the hexagon path of SWNTs. By using high‐mobility n‐type P(NDI2OD‐T2) as the sorting polymer, ambipolar SWNT transistors with better electron transport than that attained by P3DDT‐sorted SWNTs are achieved. As a result, flexible negated AND and negated OR logic circuits from the same set of ambipolar transistors are fabricated, without the need for doping. The use of n‐type polymers for sorting semiconducting SWNTs and achieving ambipolar SWNT transistor characteristics greatly simplifies the fabrication of flexible complementary metal‐oxide‐semiconductor‐like SWNT logic circuits.  相似文献   

11.
Chemiresistive sensor arrays for cyclohexanone and nitromethane are fabricated using single‐walled carbon nanotubes (SWCNTs) that are covalently functionalized with urea, thiourea, and squaramide containing selector units. Based on initial sensing results and 1H NMR binding studies, the most promising selectors are chosen and further optimized. These optimized selectors are attached to SWCNTs and simultaneously tested in a sensor array. The sensors show a very high level of reproducibility between measurements with the same sensor and across different sensors of the same type. Furthermore, the sensors show promising long‐term stability, which renders them suitable for practical applications.  相似文献   

12.
Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p-type (semi-)conducting polymers as the channel material, while n-type OECTs are yet at an early stage of development, with the best performing electron-transporting materials still suffering from low transconductance, low electron mobility, and slow response time. Here, the high electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and the large volumetric capacitance of the ladder-type π-conjugated redox polymer poly(benzimidazobenzophenanthroline) (BBL) are leveraged to develop n-type OECTs with record-high performance. It is demonstrated that the use of MWCNTs enhances the electron mobility by more than one order of magnitude, yielding fast transistor transient response (down to 15 ms) and high μC* (electron mobility × volumetric capacitance) of about 1 F cm?1 V?1 s?1. This enables the development of complementary inverters with a voltage gain of >16 and a large worst-case noise margin at a supply voltage of <0.6 V, while consuming less than 1 µW of power.  相似文献   

13.
A general strategy to disperse and functionalize pristine carbon nanotubes in a single‐step process is developed using conjugated block copolymers. The conjugated block copolymer contains two blocks: a conjugated polymer block of poly(3‐hexylthiophene), and a functional non‐conjugated block with tunable composition. When the pristine carbon nanotubes are sonicated with the conjugated block copolymers, the poly(3‐hexylthiophene) blocks bind to the surface of de‐bundled carbon nanotubes through non‐covalent ππ interactions, stabilizing the carbon nanotube dispersion, while the functional blocks locate at the outer surface of carbon nanotubes, rendering the carbon nanotubes with desired functionality. In this paper, conjugated block copolymers of poly(3‐hexylthiophene)‐b‐poly(methyl methacrylate), poly(3‐hexylthiophene)‐b‐poly(acrylic acid), and poly(3‐hexylthiophene)‐b‐poly(poly(ethylene glycol) acrylate) are used to demonstrate this general strategy.  相似文献   

14.
The effects of the incorporation of semiconducting single‐walled nanotubes (sc‐SWNTs) with high purity on the bulk heterojunction (BHJ) organic solar cell (OSC) based on regioregular poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (rr‐P3HT:PCBM) are reported for the first time. The sc‐SWNTs induce the organization of the polymer phase, which is evident from the increase in crystallite size, the red‐shifted absorption characteristics and the enhanced hole mobility. By incorporating sc‐SWNTs, OSC with a power conversion efficiency (PCE) as high as 4% can be achieved, which is ≈8% higher than our best control device. A novel application of sc‐SWNTs in improving the thermal stability of BHJ OSCs is also demonstrated. After heating at 150 °C for 9 h, it is observed that the thermal stability of rr‐P3HT:PCBM devices improves by more than fivefold with inclusion of sc‐SWNTs. The thermal stability enhancement is attributed to a more suppressed phase separation, as shown by the remarkable decrease in the formation of sizeable crystals, which in turn can be the outcome of a more controlled crystallization of the blend materials on the nanotubes.  相似文献   

15.
A good dispersion of single‐walled carbon nanotubes (SWCNTs) in liquid media is a prerequisite to fulfill many of their applications. This contribution reports an efficient approach to additive‐free dispersion of SWCNTs with the aid of functionalized carbonaceous byproducts (CBs, e.g., amorphous carbon, carbon nanoparticles, and carbonaceous fragments) in SWCNT products. SWCNT bundles are treated by oleum intercalation and nitric acid oxidation in sequence, which leads to the selective functionalization of the CBs while the structure and properties of the SWCNTs are well preserved. These functionalized CBs can improve the subsequent dispersion of SWCNTs and the majority of SWCNTs in the suspension are present in small bundles or individually. Moreover, SWCNT transparent conductive films (TCFs) are fabricated by using these suspensions. The SWCNT TCFs obtained can achieve a low sheet resistance of 76 and 133 Ω sq?1, with optical transmittance of 82% and 90% at 550 nm, respectively.  相似文献   

16.
Ultrathin composite films consisting of mixtures of metallic (m‐) and semiconducting (s‐) single‐walled carbon nanotubes (SWNTs) with a conjugated block copolymer are developed from a solution‐based process. The electronic properties of the films are precisely controlled from metallic to semiconducting to insulating. The tunability of the electronic composite sheets is mainly attributed to (1) the efficient dispersion of SWNTs with a conjugated block copolymer in solution, (2) the control of the number of nanotubes by centrifugation, and (3) the individually networked deposition of SWNTs embedded in the conjugated block copolymer on the target substrate by spin‐coating. A highly reliable field‐effect transistor with a networked composite film is realized with a specific range of tube density and a high on/off current ratio of approximately 106 which resulted from the Schottky barriers evolved between the individual m‐ and s‐SWNTs in the network. There is also great freedom when choosing both the gate dielectrics and source‐drain electrodes for transistors containing the composite films. Furthermore, the fabricated electronic composites are highly transparent, flexible, and chemically robust and thus, they can be conveniently micropatterned by photolithography, as well as by unconventional transfer printing techniques.  相似文献   

17.
Dichlorocarbene is added to the sidewalls of single‐walled carbon nanotubes (SWNTs) with diameters ranging from 1.2 to 2.2 nm. Small diameter SWNTs are found to react much more easily than large diameter SWNTs. Upon functionalization, the conductance could be largely preserved for almost all SWNTs, while an effective bandgap increase for functionalized metallic SWNTs (m‐SWNTs) and a bandgap reduction for functionalized semiconducting SWNTs (s‐SWNTs) are generally observed. The results suggest that [2 + 1] cycloaddition is an excellent choice of processing, resulting in SWNTs over a large diameter range with electronic properties that are almost unaffected. Furthermore, possible separation of SWNTs according to their diameters could be achieved due to the apparent diameter‐dependent reactivity.  相似文献   

18.
Semiconducting single‐walled carbon nanotubes (sc‐SWCNTs) enriched by a conjugated polymer extraction process have been actively studied for various applications in both electronics and optoelectronics. Although the resulting tube samples usually have high sc‐purity and concentration, SWCNT networks from such dispersions typically contain residual conjugated polymer that may degrade device performance and its removal remains a challenge while maintaining uniform, dense SWCNT thin film networks. In this study, a novel polymer–SWCNT combination based on an alternating bisfuran‐s‐tetrazine and benzo[1,2‐b:4,5‐b′]dithiophene copolymer abbreviated as PBDTFTz is proposed. This polymer decomposes at >250 °C or under UV irradiation. In situ transistor characterization under laser irradiation confirms the polymer decomposition. The study of the tube network in the transistor channel at various channel lengths reveals significantly reduced contact resistance attributed to removal of the wrapping PBDTFTz polymer. In ammonia sensing experiments, sc‐SWCNT networks demonstrate rapid and reversible responses, while the unwrapped nanotube networks prove superior in terms of signal to noise ratio and a detection limit of 2.5 ppb is calculated, almost four times better than polymer wrapped nanotubes.  相似文献   

19.
Multifunctional carbon fiber composites are imperative for next‐generation lightweight aircraft structures. However, lightning‐strike protection is a feature that is lacking in many modern carbon fiber high‐temperature polymer systems, due to their high electrical resistivity. This work presents a study on processing, materials optimization, and property development of high‐temperature bismaleimide (BMI)–carbon fiber composites filled with nickel‐coated single‐walled carbon nanotubes (Ni‐SWNTs) based on three key factors: i) dispersion of Ni‐SWNTs, ii) their surface coverage on the carbon plies and, iii) the composite surface resistivity. Atomic force microscopy analysis revealed that coating purified SWNTs with nickel enabled improved dispersion which resulted in uniform surface coverage on the carbon plies. The electrical resistivity of the baseline composite system was reduced by ten orders of magnitude by the addition of 4 wt% Ni‐SWNTs (calculated with respect to the weight of a single carbon ply). Ni‐SWNT–filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts, as indicated by the minimal carbon fiber pull‐out.  相似文献   

20.
A new type of light‐switchable “smart” single‐walled carbon nanotube (SWNTs) is developed by the reversible host–guest interaction between azobenzene‐terminal PEO (AzoPEO) and pyrene‐labeled host attached on the sidewalls of nanotubes via π–π stacking. The SWNTs hybrids not only are well dispersed in pure water, but also exhibit switchable dispersion/aggregation states upon the alternate irradiation of UV and visible light. Moreover, the SWNTs hybrids dispersion is preliminarily used as coating fluid to form transparent conductive films. The dispersant AzoPEO is removed by the contamination‐free UV treatment, decreasing the resistance of the films. This kind of light‐switchable SWNTs hybrids, possessing a ‘‘green’’ trigger and intact structure of the nanotube, may find potential applications in sensor of biomedicines, device fabrication, etc. Additionally, such a reversible host–guest interaction system may open up the possibility to control the dispersion state of SWNTs by other common polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号