首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microphase separation behavior on the surfaces of poly(dimethylsiloxane)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PHFBMA) diblock copolymer coatings was investigated. The PDMS‐b‐PHFBMA diblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the copolymers was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Surface composition was studied by X‐ray photoelectron spectroscopy. Copolymer microstructure was investigated by atomic force microscopy. The microstructure observations show that well‐organized phase‐separated surfaces consist of hydrophobic domain from PDMS segments and more hydrophobic domain from PHFBMA segments in the copolymers. The increase in the PHFBMA content can strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. And the increase in the annealing temperature can also strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. Moreover, Flory‐Huggins thermodynamic theory was preliminarily used to explain the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The kinetics of surface structure evolution in ultrathin films of low‐molecular‐weight polystyrene‐block‐polyisoprene (Mw: 7300 g mol?1–7300 g mol?1) diblock copolymer at temperatures below the bulk order‐to‐disorder transition temperature are presented. Films with two different thicknesses were studied as a function of annealing temperature using atomic force microscopy. These film thicknesses enabled the investigation of the competition between microphase separation and dewetting that resulted in two different morphologies: long‐range bicontinuous structures and random holes. Three distinctive stages of structure evolution were observed in bicontinuous structure, with the underlying mechanism compared with spinodal dewetting. Thicker films presented holes on their surfaces upon annealing at elevated temperatures, and kinetics of formation of the holes were discussed. We found that the molecular mobility determined the rates of dewetting, while the microphase separation hardly affected the dewetting process. © 2015 Society of Chemical Industry  相似文献   

3.
The aim of this study was to evaluate the role of different poly(ethylene glycol):poly(propylene glycol) (PEG:PPG) molar ratios in a triblock copolymer in the cure kinetics, miscibility and thermal and mechanical properties in an epoxy matrix. The poly(propylene glycol)‐block‐poly(ethylene glycol)‐block‐poly(propylene glycol) (PPG‐b‐PEG‐b‐PPG) triblock copolymers used had two different molecular masses: 3300 and 2000 g mol?1. The mass concentration of PEG in the copolymer structure played a key role in the miscibility and cure kinetics of the blend as well as in the thermal–mechanical properties. Phase separation was observed only for blends formed with the 3300 g mol?1 triblock copolymer at 20 wt%. Concerning thermal properties, the miscibility of the copolymer in the epoxy matrix reduced the Tg value by 13 °C, although a 62% increase in fracture toughness (KIC) was observed. After the addition of PPG‐b‐PEG‐b‐PPG with 3300 g mol?1 there was a reduction in the modulus of elasticity by 8% compared to the neat matrix; no significant changes were observed in Tg values for the immiscible system. The use of PPG‐b‐PEG‐b‐PPG with 2000 g mol?1 reduced the modulus of elasticity by approximately 47% and increased toughness (KIC) up to 43%. Finally, for the curing kinetics of all materials, the incorporation of the triblock copolymer PPG‐b‐PEG‐b‐PPG delayed the cure reaction of the DGEBA/DDM (DGEBA, diglycidyl ether of bisphenol A; DDM, Q3‐4,4′‐Diaminodiphenylmethane) system when there is miscibility and accelerated the cure reaction when it is immiscible. All experimental curing reactions could be fitted to the Kamal autocatalytic model presenting an excellent agreement with experimental data. This model was able to capture some interesting features of the addition of triblock copolymers in an epoxy resin. © 2018 Society of Chemical Industry  相似文献   

4.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

5.
Composites which combine biocompatible polymers and hydroxyapatite are unique materials with regards to their mechanical properties and bioactivity in the development of temporary bone‐fixation devices. Nanocomposites based on a biocompatible and amphiphilic triblock copolymer of poly(l‐ lactide) (PLLA) and poly(ethylene oxide) (PEO) —PLLA‐b‐PEO‐b‐PLLA— and neat (nHAp) or PEO‐modified (nHAp@PEO) hydroxyapatite nanoparticles were prepared by dispersion in benzene solutions, followed by freeze‐drying and injection moulding processes. The morphology of the copolymers of a PEO block dispersed throughout a PLLA matrix was not changed with addition of the nanofillers. The nHAp particles were spherical and, after modification, the nHAp@PEO nanoparticles were partially agglomerated. In the nanocomposites, these particles characteristics remained unchanged, and the nHAp particles and nHAp@PEO agglomerates were uniformly dispersed through the copolymer matrix. These particles acted as nucleating agents, with nHAp@PEO being more efficient. The incorporation of nHAp increased both the reduced elastic modulus (~22%) and the indentation hardness (~15%) in comparison to the copolymer matrix, as determined by nanoindentation tests, while nHAp@PEO addition resulted in lower increments of these mechanical parameters. The incorporation of untreated nHAp was, therefore, more beneficial with regards to the mechanical properties, since the amphiphilic PLLA‐b‐PEO‐b‐PLLA matrix was already efficient for nHAp nanoparticles dispersion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44187.  相似文献   

6.
A series of polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (PS/PDMS/PS) triblock copolymers had been synthesized by atom transfer radical polymerization (ATRP). The products had been characterized by Fourier transform infrared, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, contact angle, and scanning electron microscope. The results indicate that the PS chains have been successfully blocked onto the PDMS back bone, and the PS‐b‐PDMS‐b‐PS triblock copolymers have low‐surface tension, good thermal stability, and microphase separation configuration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The synthesis of triblock copolymer poly(octadecyl acrylate‐b‐styrene‐b‐octadecyl acrylate), using atom transfer radical polymerization (ATRP), is reported. The copolymers were prepared in two steps. First, polystyrene was synthesized by ATRP using α,α′‐dichloro‐p‐xylene/CuBr/bpy as the initiating system; Second, polystyrene was further used as macroinitiator for the ATRP of octadecyl acrylate to prepare ABA triblock copolymers in the presence of FeCl2·4H2O/PPh3 in toluene. Polymers with controlled molecular weight (Mn = 17,000–23,400) and low polydispersity index value (1.33–1.44) were obtained. The relationship between molecular weight versus conversion showed a straight line. The effect of reaction temperature on polymerization was also investigated, showing a faster polymerization rate under higher temperature. The copolymers were characterized by FTIR, 1H‐NMR, DSC, and GPC and the crystallization behavior of the copolymers was also studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1539–1545, 2004  相似文献   

8.
A series of new all‐conjugated diblock copolymers, poly(2,5‐dioctyloxy‐p‐phenylene)‐block‐poly(3‐methoxyethoxyethoxy‐methylthiophene) (PPP‐b‐P3MEEMT), with hydrophilic side‐chains have been synthesized by quasi‐living Grignard metathesis polymerization. The narrow polydispersity indices of the block copolymers are in the range 1.32–1.40. The block ratios in the obtained diblock copolymers can be well defined by the feed ratios of the monomers. Photoluminescence results reveal that resonance energy transfer occurs from the PPP block to the P3MEEMT block in dilute solution. Differential scanning calorimetry shows that both PPP and P3MEEMT blocks in the copolymers produce crystalline regions and lead to microphase separation as indicated by two endothermal transitions, corresponding to the melting peaks of the PPP and P3MEEMT blocks, respectively. The formations of microphase‐separated nanostructures in annealed copolymer films are also observed using transmission electron microscopy. © 2012 Society of Chemical Industry  相似文献   

9.
The compatibility of six groups 12 miktoarm polystyrene‐block‐poly(methyl methacrylate) copolymers is studied at 383, 413, and 443 K via mesoscopic modeling. The values of the order parameters depend on both the architectures of the block copolymers and the simulation temperature, whereas the change tendency of the order parameters is nearly the same at 413 and 443 K. Obviously, temperature presents more obvious effect on long and PMMA‐rich chains. A study of plain copolymers doped with nanoparticles shows that the microscopic phase is influenced by not only the properties of the nanoparticles, such as the size, number, and density, but also by the composition and architecture of copolymers. Increasing the size and the number of the nanoparticles used as a dopant plays the most significant role on the phase morphologies of the copolymers at lower and higher temperatures, respectively. Especially, the 13214‐type copolymers, which are PMMA‐rich composition, present microscopic phase separation as varying degrees of lamellar phase morphologies at 443 K, alternated with PS and PMMA component. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Acrylic acid was crosslinked with N,N′‐methylenebisacrylamide and converted to bioactive hydrogels by neutralization with different amino containing compounds. Several amino containing compounds were used such as 2‐aminopyridine, triethanol amine, hexamethylenetetramine (HMTA), pyridine, and imidazole. The best crosslinker ratio was determined in addition to the maximum absorbed water in different mediums. The antibacterial activity of the prepared gels were examined against examples of Gram‐positive (Staphylococcus aureus) and Gram‐negative bacteria (Escherichia coli) using agar plate method. The study was extended by evaluating one of prepared gels in columns as models for water filters. All prepared gels showed antibacterial action in agar plate method against both bacterium and the column method using one of the prepared gels showed excellent filtration and biocidal action. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Haifeng Yu  Takaomi Kobayashi 《Polymer》2011,52(7):1554-3344
Using a bromo-terminated poly(ethylene oxide) as a macroinitiator, an amphiphilic liquid-crystalline (LC) diblock copolymer with an azobenzene moiety as a nematic mesogen was prepared by an atom transfer radical polymerization process. In thin films of the well-defined diblock copolymer with the mesogenic block as a continuous phase upon microphase separation, the influence of supramolecular cooperative motion on the microphase-separated nanocylinders was systematically studied. Although the major phase of the hydrophobic nematic LC block showed only one-dimensional order, it could endow the separated minor phase of the hydrophilic PEO nanocylinders with three-dimensionally ordered structures. Both out-of-plane perpendicular and in-plane parallel patternings of the regularly ordered nanocylinder arrays were successfully fabricated on macroscopic scales by thermal annealing and photoalignment, respectively. The microphase-separated nanostructures with high regularity showed excellent reproducibility and mass production, which might guarantee nanotemplated fabrication processes and would lead to novel industrial applications in macromolecular engineering.  相似文献   

12.
Earlier studies have shown that poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blocks are compatible at 270 and 298 K, and that their Flory–Huggins interaction parameters have the same blending ratio dependence at both temperatures. At a much higher temperature (400 K), the behavior of PEO/PMMA blends is strikingly different as both components become incompatible, while the Flory–Huggins parameters are low. Here we investigate the effect of doping with nanoparticles on the degree of incompatibility of twelve miktoarm PEO‐b‐PMMA copolymers at 400 K. Since PEO tends to be semicrystalline and long chains aggregate easily, PEO‐rich and long‐chain copolymer blends feature the highest degree of incompatibility for all nanoparticle arrangements and present cubic phase morphologies. In addition, the largest nanoparticles can reinforce the microscopic phase separation of all PEO‐b‐PMMA copolymers. This shows that the main factor affecting the phase morphology is the size of the nanoparticles. Also, only the asymmetric Da3‐type PEO‐rich copolymers show a hexagonal cylindrical phase morphology, which illustrates the effect induced by the nanoparticles on the microscopic phase separation changes of the PEO‐b‐PMMA copolymers. These induced effects are also related to the composition and molecular architecture of the copolymers. © 2013 Society of Chemical Industry  相似文献   

13.
A novel method for preparing silver/poly(siloxane‐b‐methyl methacrylate) (Ag/(PDMS‐b‐PMMA)) hybrid nanocomposites was proposed by using the siloxane‐containing block copolymers as stabilizer. The reduction of silver nitrate (AgNO3) was performed in the mixture solvent of dimethyl formamide (DMF) and toluene, which was used to dissolve double‐hydrophobic copolymer, as well as served as the powerful reductant. The presence of the PMMA block in the copolymer indeed exerted as capping ligands for nanoparticles. The resultant nanocomposites exhibited super hydrophobicity with water contact angle of 123.3° and the thermogravimetry analysis (TGA) revealed that the resultant nanocomposites with more PDMS were more heat‐resisting. Besides, the antimicrobial efficiency of the most desirable nanocomposite (Ag/PDMS65b‐PMMA30 loaded with 7.3% silver nanoparticle) could reach up to 99.4% when contacting with escherichia coli within 120 min. As a whole, the resultant nanocomposites by the integration of excellent properties of silver nanoparticles as well as siloxane‐block copolymers can be a promising for the development of materials with hydrophobic, heat‐resisting and outstanding antibacterial properties from the chemical product engineering viewpoint. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4780–4793, 2013  相似文献   

14.
Di Hu 《Polymer》2010,51(26):6346-6354
Poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer (PVPy-b-PS) was synthesized via sequential reversible radical-fragmentation transfer polymerization with S-1-phenylethyl O-ethylxanthate as a chain transfer agent. The block copolymer was incorporated into polybenzoxazine to access the nanostructures in the thermosets. The nanostructures in the thermosets were investigated by means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). It was found that disordered and/or ordered PS nanophases were formed in the PBa thermosets. It is judged that the formation of nanophases followed the mechanism of reaction-induced microphase separation in terms of the miscibility of the subchains of the diblock copolymer (viz. PVPy and PS) with polybenzoxazine after and before curing reaction.  相似文献   

15.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

16.
Poly(ethylene glycol terephthalate)‐b‐Poly(butylene terephthalate) copolymer (PEGT‐b‐PBT) films with different copolymer compositions were incubated in phosphate buffered saline under pH 7.4 at 37°C to study hydrolytic degradation and morphology up to 300 days. With the fall of intrinsic viscosity and mass of degraded films, SEM micrographs show that a set of particular and highly interconnected porous morphologies closely related to the content of PBT hard segments in copolymer is developed. Moreover, the variation in PBT crystallinity for copolymer films with weight ratio of 70/30 fluctuates with the development of degradation profiles, and PEGT content for copolymer films with weight ratio of 80/20 and 70/30 gradually decreases. The hydrolytic experiments demonstrate that the degradation of PEGT‐b‐PBT copolymer results from the cleavage of ester bonds between hydrophilic PEG and terephthalate. At the beginning period of degradation, PEGT‐b‐PBT copolymer films follow a typical mechanism of bulk degradation, and then undergo both bulk degradation and surface erosion, all of which finally generate the particular porous morphologies for copolymer films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A new nanoparticle/block copolymer (NP/BCP) hybrid material combining the unique properties of BCP poly(styrene)‐b‐poly(d ‐lactide) (PS‐b‐PDLA) and inorganic NP quantum dots CdSe was developed. A systematic study on the microphase separation of a series of PS‐b‐PDLAs by small‐angle X‐ray scattering showed that the degree of order of the separated microdomains depended on the initial state of the BCP and the measurement temperature and can be improved through isothermal crystallization of PDLA, thermal annealing and shear field etc. Incorporating a small amount of NPs into the BCP matrix can improve the mobility of the polymer chains and thus promote self‐assembly of the BCP, which leads to hierarchically ordered structures. Excess NPs, however, cannot be completely incorporated into the PDLA domains, resulting in the phase transformation of the BCP, destruction of the ordered structure and even macroscopic phase separation due to the aggregation of NPs. An important observation is that stereocomplexation between PDLA and poly(l ‐lactide) could provide a driving force to promote microphase separation of the BCP. The strategy presented in the current work has potential applications for developing highly ordered NP/BCP hybrid materials. © 2014 Society of Chemical Industry  相似文献   

18.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

19.
Waterborne fluorinated polyurethanes (WFPUs) based on hydroxyl‐terminated poly(fluoroalkyl methacrylate)s (HTPFMAs) with different main‐chain lengths were synthesized. The structure of HTPFMA was characterized using 1H NMR spectroscopy, measurements of hydroxyl values and gel permeation chromatography. The microstructures of WFPUs were investigated using Fourier transform infrared spectroscopy, which indicated that hydrogen bonding interactions in hard segments of WFPUs were enhanced by the introduction of HTPFMA and increased with increasing main‐chain length of HTPFMA. The results of X‐ray diffraction demonstrated that increasing the main‐chain length of HTPFMA resulted in an increase of crystallinity in hard segments. Differential scanning calorimetry revealed that the melting temperature of micro‐crystallites in hard segments and the microphase separation increased with an increase of HTPFMA main‐chain length. Dynamic mechanical analysis and scanning electron microscopy also confirmed that HTPFMA with longer main‐chain length can promote the extent of microphase separation of WFPUs between soft and hard domains. The mechanical properties of WFPUs were improved due to the increase of microphase separation with increasing HTPFMA main‐chain length. © 2018 Society of Chemical Industry  相似文献   

20.
This study describes the synthesis of amphiphilic ABC‐triblock copolymers comprising a central pseudopoly(4‐hydroxy‐L ‐proline) segment and terminal hydrophilic poly(ethylene glycol)methyl ether as well as hydrophobic poly(ε‐caprolactone) blocks. Differential scanning calorimetry, 1H‐NMR spectroscopy, and gel permeation chromatography are used to characterize the copolymers. The thermal properties (Tg and Tms) of the triblock copolymers depend on the composition of polymers. Larger amounts of ε‐CL incorporated into the macromolecular backbone increased Tg and Tms. Fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering are utilized to investigate their micellar characteristics in the aqueous phase. Observations showed a higher critical micelle concentration with higher hydrophilic components in the copolymers. The micelle exhibited a core‐shell‐corona and/or vesicle shape, and the average size was less than 300 nm. Drug entrapment efficiency and drug loading of micelles depending on the composition of block polymers are also described. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号