首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branched polyethyleneimine (bPEI) was used to modify the surface of Fe3O4 nanoparticles coated with silica layer, and then, it was treated with ethyl iodide to prepare Fe3O4@SiO2@Ethylated‐bPEI. In the next step, the yolk–shell structure was gained by selectively etching the SiO2 middle layer. Finally, copper(I) was introduced to the yolk–shell Fe3O4@Ethylated‐bPEI and the activity of the catalyst was evaluated for atom transfer radical polymerization (ATRP) of styrene, led to obtain the well‐defined polymer with relatively low polydispersity. The toxicity of the residual copper in the polymer product was a limiting issue for applicability of ATRP reactions especially for biological purposes. In this report, the copper content in the polymer was reduced to the excellent value of 1.1 ppm. Moreover, the magnetic isolation, recyclability, and remove the need for an external ligand were other advantages of the synthesized catalyst which makes it suitable for employing in ATRP reactions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42337.  相似文献   

2.
The self‐condensing vinyl polymerization of styrene and an inimer formed in situ by atom transfer radical addition from divinylbenzene and 2‐bromoisobutyl‐tert‐butyrate using atom transfer radical polymerization technique was studied. To study the polymerization mechanism and achieve high molecular weight polymer in a high polymer yield, the polymerization was carried out in bulk at 80°C. Proton nuclear magnetic resonance (1H‐NMR) spectroscopy and gel permeation chromatography (GPC) coupled with multiangle laser light scattering (MALLS) were used to monitor the polymerization process and characterize the solid polymers. It is proved that the polymerization shows a “living” polymerization behavior and the crosslinking reaction has been restrained effectively due to the introduction of styrene. Polymers with high molecular weight (Mw.MALLS > 105) can be prepared in high yield (near 80%). Comparison of the apparent molecular weights measured by GPC with the absolute values measured by MALLS indicates the existence of branched structures in the prepared polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Highly branched poly(N‐isopropylacrylamide) (PNIPAM) has been synthesized by a reversible addition‐fragmentation chain transfer (RAFT) copolymerization of NIPAM and a vinyl contained trithiocarbonate RAFT agent. 1H‐NMR measurements revealed that the degrees of branch (DB) are in the range of 0.032–0.105. Laser light scattering (LLS) measurements gave the hydrodynamic radii (Rh) of the polymers to be 3.6–5.7 nm with molecular weight in the range of 1.3 × 104 g/mol–2.3 × 10?4 g/mol. Highly branched PNIPAM with terminal thiol groups were obtained by aminolysis the polymers, and the product can be oxidized by air to form disulfide bonds (? S? S? ) among chains and resulting in the formation of nanoparticle in aqueous solution. Interestingly, the nanoparticle in size of Rh ? 80 nm showed a thermogelling behavior to form bulk hydrogel when the temperature was increased up to 25°C due to the thermo‐induced association of the PNIPAM chains among the nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Styrene‐divinylbenzene or glycidylmethacrylate‐divinyl‐benzene were copolymerized in powdery polypropylene suspended in water and the resultant polymer composites were blended with a definite amount of polypropylene. The products consisted of polypropylene and the fine particles of the copolymer, which were uniformly dispersed in polypropylene phase. These products were melt‐spun to prepare polypropylene fibers containing the fine particles and then the fibers were stretched to make the fibers microporous. Some properties were estimated: porosity, 1.6–19.7%; average pore size, 0.004–0.009 µm; and specific surface, 9–137 m2/g. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 722–727, 1999  相似文献   

5.
Partially porous poly(styrene‐divinylbenzene) (PS‐DVB) particles in the micron size range were prepared by the method of multistep swelling and polymerization involving the use of polymeric porogens. Polystyrene (PS) seeds prepared by dispersion polymerization were expanded in particle size by absorbing styrene and initiator, and then polymerized to form polymeric porogen particles. The newly synthesized PS chains served as the porogens of the PS‐DVB particles, resulting from the copolymerization of styrene and divinylbenzene in the swollen polymeric porogen particles. PS‐DVB particles with a specific surface area of up to 34 m2/g and a pore volume of up to 0.15 cm3/g were obtained. The average pore diameter of PS‐DVB particles was in the range of 15–24 nm. An increasing amount of toluene used in the copolymerization step increased the pore volume and specific surface area. Lipase from Candida rugosa was immobilized on the prepared PS‐DVB by physical adsorption. The optimum temperature for enzymatic activity was increased and the thermal deactivation of enzyme in organic solvent was slowed down by the immobilization. However, compared with soluble enzyme, the immobilized lipase on PS‐DVB retained a less activity after the first stage deactivation, suggesting a possible change in the conformation of enzyme molecule by immobilization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 39–46, 2001  相似文献   

6.
Branched poly(styrene‐co‐dodecyl acrylate) (BPSDA) was prepared by the atom transfer radical copolymerization of styrene with dodecyl acrylate using p‐cholomethyl styrene as initiator‐monomer (inimer) and CuCl/Bpy (2,2′‐bipyridine) complex as catalyst. The remarkable discrepancies between the molecular weight determined by gel permeation chmotagraphy and multiangel laser light scattering reveals the highly branched structure of the resulting copolymer. Furthermore, the composition was analyzed by hydrogen nuclear magnetic resonance (1H NMR), which is consistent with the feed ratio of monomers. Blending of the branched product with high density polyethylene (HDPE) was attempted in haake mixer. The rheological, mechanical, and thermal stability properties of the resulting blends were studied. Compared with pure HDPE, the complex viscosity of blend with addition of 4 wt % BPSDA decreased by 15.9%. While the elongation at break decreased by 5.5% and tensile strength decreased by 4.2%. SEM (scanning electron microscopy) revealed that the average particle size of disperse phase in HDPE/4% BPSDA blend is 0.45 μm in diameter. Differential scanning calorimetry characterization showed that the addition of BPSDA accelerated the relative crystallization rate but decreased the final absolute degree of crystallinity. No obvious change of thermal stability of the blends was observed relative to pure HDPE. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Polypropylene composites were prepared by copolymerizing styrene and divinylbenzene in molten polypropylene by using an extruder. The resultant copolymers are of very fine particles uniformly dispersed in polypropylene phase with no aggregation. The properties of the resultant polypropylene composites were studied: crystalline structure, and mechanical, dynamic viscoelastic, and thermal properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1614–1620, 2000  相似文献   

8.
A novel branched poly(anhydride‐co‐glycerol) was synthesized by introducing glycerin into a poly(sebacic anhydride‐co‐ethylene glycol) system via melt condensation without catalyst. The nuclear magnetic resonance spectroscopy (NMR) analysis showed that the reaction between the hydroxyl group on glycerin and the sebacic anhydride pre‐polymer was completed without any hydroxyl group remaining. In addition, with more glycerin introduced, intramolecular chain reaction became more remarkable. This resulted in the production of more cyclic chains and lower molecular weight species that hinder the crystal growth of sebacic anhydride chain segments. This in turn decreases melting temperature of sebacic anhydride chain segments in these synthesized materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 886–893, 2003  相似文献   

9.
Poly(styrene‐co‐divinylbenzene) microspheres with size ranging from 1.6 to 1.8 μm were prepared in acetic acid by precipitation polymerization. The particle size and particle size distribution were determined by laser diffraction particle size analyzer, and the morphology of the particles was observed with scanning electron microscope. Besides, effects of various polymerization parameters such as initiator and total monomer concentration, divinylbenzene (DVB) content, polymerization time and polymerization temperature on the morphology and particle size were investigated in this article. In addition, the yield of microspheres increased with the increasing total monomer concentration, initiator loading, DVB concentration and polymerization time. In addition, the optimum polymerization conditions for synthesis of monodisperse crosslinked poly(styrene‐co‐divinylbenzene) microspheres by precipitation polymerization in acetic acid were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
SBS as polymer I, poly(styrene–methyl methacrylate) polymerized by atom transfer radical polymerization as polymer II, and a thermoplastic interpenetrating polymer network of SBS/poly(styrene–methyl methacrylate) were prepared by the sequential method. The effects of the polymerization temperature, the composition of the catalyst, the ratio of the monomers studied, and the kinetics at 90°C were also investigated. It was shown that when polymerization was initiated by a BPO/CuCl/bpy (BPO:CuCl:bpy = 1:1:3) system at 90°C, the mass averaged molecular weight of the poly(styrene–methyl methacrylate) increased with monomer conversion, and the polydispersities were kept very low. Fourier transform infrared spectroscopy and gel permeation chromatogram showed that poly(styrene–methyl methacrylate) with low polydispersities had been synthesized. Thus, a thermoplastic interpenetrating polymer network comprised of both narrow molecular‐weight‐distribution components was successfully prepared. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2007–2011, 2003  相似文献   

11.
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Branched polyacrylonitrile (PAN) was prepared through a self‐condensing vinyl copolymerization of acrylonitrile and 2‐(2‐bromopropionyloxy)ethyl acrylate (BPEA). The branched architecture of the product was confirmed by NMR spectra and the average degree of branching (DB ) was estimated. Through a comparison of the intrinsic viscosity of the product with that of its linear analogue, the contraction factor g′ was calculated. It was found that the viscosity of the branched PAN was obviously lower that that of linear PAN. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

14.
We synthesized a branched poly(phenylene ethylene) (BPPE) with bromomethyl groups from 1,3,5‐tris(bromomethyl)benzene derivatives via the Wurtz coupling reaction. In the case of 1,3,5‐tris(bromomethyl)‐2,4,6‐trimethoxybenzene as a monomer, the obtained polymer (Mn = 6100, Mw/Mn = 1.9) had bromomethyl groups. The 1HNMR analysis showed that a very large number of unreacted bromomethyl groups (Ph‐CH2Br) remained in the BPPE; the reaction of this polymer with phenolic hydroxyl groups proceeded quantitatively. This suggested that BPPEs can be functionalized using unreacted bromomethyl groups, making them a very attractive starting point for the creation of functionalized BPPEs with further enhanced processability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The phase behavior and kinetics of phase separation for blends of the random copolymer poly(styrene‐co‐methyl methacrylate) (SMMA) and poly(styrene‐co‐acrylonitrile) (SAN) were studied by using small‐angle laser light scattering. The partially miscible SMMA/SAN blends undergo spinodal decomposition (SD) and subsequent domain coarsening when quenched inside the unstable region. For blends of SMMA and SAN, the early stages of the phase separation process could be observed, unlike a number of other blends where the earliest stages are not visible by light scattering. The process was described in terms of the Cahn–Hilliard linear theory. Subsequently, a coarsening process was detected and the time evolution of qm at the beginning of the late stages of phase separation followed the relationship qmt?1/3, corresponding to an evaporation–condensation mechanism. Self‐similar growth of the phase‐separated structures at different timescales was observed for the late stage. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated polystyrene (PS‐Br) onto the emeraldine form of polyaniline. End brominated polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique and then deprotonated polyaniline was reacted with PS‐Br to prepare PS‐grafted PANi (PS‐g‐PANi) copolymer through N‐grafting reaction. The degree of N‐grafting can be controlled by adjusting the molar feed ratio of PS‐Br to the number of repeat units of PANi. The microstructure and compositions of the PS‐g‐PANi copolymers with different degrees of N‐substitution were characterized by FT‐IR, elemental analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The cyclicvoltammetry shows that the electroactivity of N‐substituted PANi is strongly dependent on the degree of N‐grafting. The solubility of PS‐g‐PANi copolymers in common organic solvents such as tetrahydrofuran and chloroform was improved by increasing the degree of N‐grafting, and also the samples are partially soluble in xylene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
BACKGROUND: The self‐assembly of amphiphilic copolymers has been demonstrated to be a powerful route towards supramolecular objects with novel architectures, functions and physical properties. In this study, the synthesis and morphology of amphiphilic linear polystyrene (PS)‐block‐poly(2‐vinylpyridine) (P2VP) and heteroarm star PS‐star‐P2VP copolymers are studied. The dispersion of silver nanoparticles with the prepared PS‐block‐P2VP and PS‐star‐P2VP copolymers is also discussed. RESULTS: Amphiphilic copolymers with different P2VP chain lengths were successfully synthesized using atom transfer radical polymerization (ATRP). The copolymers prepared had low polydispersity indices. Various aggregate morphologies, including spheres, vesicles, rods, large compound micelles, two‐dimensional ring‐like and three‐dimensional hollow structures, were formed by varying the hydrophilic coil length and the selective solvent content. Silver nanoparticles showed good dispersion behavior in both types of copolymers. CONCLUSION: Based on this study, it will be possible to prepare metal/copolymer nanocomposites by direct mixing. Further, the PS‐block‐P2VP and PS‐star‐P2VP copolymers prepared can be used in the preparation of nanoporous films as templates and nanoparticles as nanoreactors. They can also be applied in terms of oil recovery, paints and cosmetics formulations, as well as in pharmaceutical and medical applications as rheological agents. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
Polymeric supports based on divinylbenzene (DVB) were prepared by aqueous suspension polymerization in presence or absence of styrene (S), using toluene and n‐heptane as diluents of the monomers. Poly(S–DVB) and poly(DVB) were sulfonated with sulfuric acid in presence of 1,2‐dichloroethane. The influence of the morphological structure of the supports and as a consequence of the catalyst on the esterification reaction of acetic acid with n‐butanol was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3616–3627, 2006  相似文献   

19.
The liquid crystallization of general polymer (GP) with maleic anhydride in the main chain has been realized through molecular recognition and self‐assembly based on intermolecular hydrogen bonds. Poly[styrene‐co‐(N‐4‐carboxylphenyl)maleimide] (SMIBA) was synthesized by imidization and dehydration of Poly(styrene‐co‐maleic anhydride) (SMA) with p‐aminobenzoic acid (ABA) for use as an H‐bonded donor polymer. 4‐Methoxy‐4′‐stilbazole (MSZ) and 4‐nitro‐4′‐stilbazole (SZNO2) were prepared as an H‐bonded acceptor. SMIBA was complexed with MSZ or SZNO2 by slow evaporation from pyridine solution to form a self‐assembly, which exhibits the mesophase, while neither of the individual components is mesogenic. The phase diagrams of a variety of mixtures between of SMIBA and stilbazoles have been established using DSC and POM. They show complete miscibility and high thermal stability of the liquid crystalline phase over the whole composition range. The tuning of liquid crystalline properties was achieved by changing the composition of the mixture and involving it with a mixture of SZNO2 and MSZ. IR measurements strongly support the existence of an H‐bonded complex between the carboxylic acid of SMIBA and the pyridine group of stibazoles. Unlike conventional side‐chain liquid crystalline polymer (SLCP), supramolecular SLCP with a lower molecular weigh polymeric donor has higher thermal stability of the liquid crystalline phase due to the microphase separated in the hydrogen bonding case. Liquid crystallization of GP, such as SMA, induced by hydrogen bonds, offers a new route to prepare functional material with controlled molecular architecture from readily accessible and simpler precursors. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 97–105, 1999  相似文献   

20.
在纤维素LiCl/DMAc均相溶液中,通过氯乙酰氯(ClC2OCl)与纤维素的均相酰化反应制得纤维素氯乙酸酯(Cellulose-ClAc)后,将其溶解在DMAc中,在FeCl2/4-二甲氨基吡啶(DMAP)的催化作用下,引发甲基丙烯酸丁酯(BMA)的均相ATRP 聚合反应,制备了纤维素/BMA接枝共聚物(Cellulose-g-PBMA),考察了反应时间、反应温度、反应物配比等对酰化及接枝聚合反应的影响,并通过测试Cellulose-g-PBMA薄膜的接触角,对最终产物的疏水性能进行了研究;采用FTIR、NMR、SEM、TEM、AFM等分析手段对Cellulose-ClAc及Cellulose-g-PBMA的结构进行了表征;利用GPC分析了接枝聚合反应的活性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号