首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work is to ascertain the characteristics of desirable (cure) and especially undesirable (scorch) crosslinking when carbon black filled ethylene propylene diene terpolymer (EPDM) is processed using different peroxide initiators. The mixing temperature and the nature of the peroxide initiator are crucial parameters affecting scorch (undesirably premature crosslinking) in this rubber. Processability and properties of EPDM prepared using various mixer set temperatures have been investigated. Dicumyl peroxide (Luperox DC), di(t‐butylperoxy) diisopropylbenzene (Luperox F), and 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (Luperox 101) were used as crosslinking initiators. Higher mixing temperatures give shorter scorch times, greater scorch magnitudes, greater heterogeneities in crosslink spatial distribution and poorer tensile properties. However, extreme localization of the unwanted crosslinking at the rubber‐filler interface does have a beneficial effect. Luperox DC offers poorer processability and poorer resulting properties than do Luperox F and Luperox 101, due to its shorter half‐life and greater solubility in the rubber phase. This is the first time that the spatial heterogeneity of crosslinking and scorch has been related to the basic thermodynamics of 3‐component 2‐phase systems. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44523.  相似文献   

2.
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

4.
A series of PB‐g‐SAN impact modifiers (polybutadiene particles grafted by styrene and acrylonitrile) are synthesized by seed emulsion copolymerization initiated by oil‐soluble initiator, azobisiobutyronitrile (AIBN). The ABS blends are obtained by mixing SAN resin with PB‐g‐SAN impact modifiers. The mechanical behavior and the phase morphology of ABS blends are investigated. The graft degree (GD) and grafting efficiency (GE) are investigated, and the high GD shows that AIBN has a fine initiating ability in emulsion grafting of PB‐g‐SAN impact modifiers. The morphology of the rubber particles is observed by the transmission electron microscopy (TEM). The TEM photograph shows that the PB‐g‐SAN impact modifier initiated by AIBN is more likely to form subinclusion inside the rubber particles. The dynamic mechanical analysis on ABS blends shows that the subinclusion inside the rubber phase strongly influences the Tg, maximum tan δ, and the storage modulus of the rubber phase. The mechanical test indicates that the ABS blends, which have the small and uniform subinclusions dispersed in the rubber particles, have the maximum impact strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
The ternary blends of polyamide 6/maleated ethylene‐propylene‐diene rubber/epoxy (PA6/EPDM‐g‐MA/EP) were prepared by a twin‐screw extruder with four different blending sequences. With the variation of blending sequence, the ternary blends presented distinct morphology and mechanical properties because of different interactions induced by various reactive orders. The addition of epoxy could increase the viscosity of the PA6 matrix, but a considerably larger size of the dispersed rubber phase was observed while first preblending PA6 with epoxy followed by blending a premix of PA6/EP with EDPM‐g‐MA, which was attested by rheological behaviors and SEM observations. It was probably ascribed to the fact that the great increase of the interfacial tension between the matrix and rubber phase aroused a great coalescence of rubber particles. The presence of epoxy in the rubber phase reduced the rubber's ability to cavitate so that the toughening efficiency of the EPDM‐g‐MA was decreased. The results of mechanical testing revealed that the optimum blending sequence to achieve balanced mechanical properties is blending PA6, EPDM‐g‐MA, and epoxy simultaneously in which the detrimental reactions might be effectively suppressed. In addition, thermal properties were investigated by TG and DSC, and the results showed that there was no distinct difference. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
This study evaluates the effects of ethylene‐propylene‐diene‐monomer grafted maleic anhydride (EPDM‐g‐MAH) and internal mixer melt compounding processing parameters on the properties of natural rubber/ethylene‐propylene‐diene rubber (NR/EPDM) blends. Using Response Surface Methodology (RSM) of 25 two‐level fractional factorial, we studied the effects of NR/EPDM ratio, mixing temperature, Banbury rotor speed, mixing period, and EPDM‐g‐MAH contents in NR/EPDM blends. The study found that the presence of EPDM‐g‐MAH in NR/EPDM blends had a predominant role as a compatibilizing agent, which affected the processability and properties of the final material. We also determined the model fitting with constant determination, R2 of 99.60% for tensile strength (TS) response with a suggested combination of mixing process input parameters. The reproducibility of the proposed mixing strategy was then confirmed through model validation with a minor deviation at +2.303% and higher desirability of 0.960. This study is essential in providing a process design reference for NR/EPDM blends preparation by melt‐blending and the role of a compatibilizer from the systematic Design of Experiment (DOE) approach. The experimental findings were further supported with swelling and cross‐link density measurements, differential scanning calorimetry analysis, and observation of fracture morphology using a scanning electron microscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42199.  相似文献   

7.
SAN and EPDM are not miscible. In this work, the dry blending of SAN and EPDM using Centrex (acrylonitrile/EPDM/styrene graft copolymer) and EPMMA (EPDM‐g‐Mah) as coagents was studied. Centrex content was used at 6–20 wt %. EPMMA content in the mixture was 20 wt %. The effects of coagent type and content on the mechanical properties and morphology were investigated. SEM micrographs of SAN/EPDM/Centrex and SAN/EPDM/EPMMA blends showed that both Centrex and EPMMA have an effective role in forming a finer morphology. For the ternary blends, the addition of coagent resulted in a significant reduction in the size of the dispersed phase. The mechanical properties of SAN/EPDM/coagent blends were improved significantly in comparison to the simple SAN/EPDM blends. SAN/EPDM/Centrex blends showed higher stress‐at‐break and SAN/EPDM/EPMMA blends showed higher impact strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

10.
The formation of core‐shell morphology within the dispersed phase was studied for composite droplet polymer‐blend systems comprising a polyamide‐6 matrix, ethylene‐propylene‐diene terpolymer (EPDM) shell and high density polyethylene (HDPE) core. In this article, the effect of EPDM with different molecular weights on the morphology and properties of the blends were studied. To improve the compatibility of the ternary blends, EPDM was modified by grafting with maleic anhydride (EPDM‐g‐MAH). It was found that core‐shell morphology with EPDM‐g‐MAH as shell and HDPE as core and separated dispersion morphology of EPDM‐g‐MAH and HDPE phase were obtained separately in PA6 matrix with different molecular weights of EPDM‐g‐MAH in the blends. DSC measurement indicated that there may be some co‐crystals in the blends due to the formation of core‐shell structure. Mechanical tests showed that PA6/EPDM‐g‐MAH/HDPE ternary blends with the core‐shell morphology exhibited a remarkable rise in the elongation at break. With more perfect core‐shell composite droplets and co‐crystals, the impact strength of the ternary blends could be greatly increased to 51.38 kJ m?2, almost 10 times higher than that of pure PA6 (5.50 kJ m?2). POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

11.
Polyamide 6 (PA6)/maleated ethylene–propylene–diene rubber (EPDM‐g‐MA)/organoclay (OMMT) composites were melt‐compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM‐g‐MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one‐step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM‐g‐MA, and this was due to the reactions between PA6, EPDM‐g‐MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM‐g‐MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM‐g‐MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Styrene‐EPDM‐acrylonitrile tripolymer (EPDM‐g‐SAN) was synthesized by the graft copolymerization of styrene (St) and acrylonitrile (An) onto ethylene‐propylene‐diene terpolymer (EPDM) with “phase inversion” emulsification technique. The high impact strength engineering plastics AES was the blend of SAN resin and EPDM‐g‐SAN, which occupied good weathering and yellow discoloration resistivity. The effects of An percentage in comonomer and the weight proportion of EPDM to St‐An on graft copolymerization behavior and AES notched impact strength were studied. The results showed that monomer conversion ratio (CR) exhibited a peak when the An percentage changed, and the maximum value was 97.5%. Grafting ratio (GR) and grafting efficiency (GE) enhance as well. The notched impact strength of AES presented a peak with the maximum value of 53.0 KJ/m2, when An percentage was at the range of 35–40%. The spectra of FTIR showed that St and An were graft onto the EPDM. DSC analysis illuminated that Tg of EPDM phase in the blends was lower than that of the pure EPDM. TEM and SEM micrographs indicated that the polarity of g‐SAN of EPDM‐g‐SAN was the main factor effect the particle morphology, in terms of size, distribution and isotropy. When weight ratio of St to An was 65/35, the polarity of g‐SAN chains was appropriate, and the EPDM‐g‐SAN particles dispersed well in the SAN matrix. The super impact toughness is interpreted in terms of EPDM phase cavitation and enhanced plastic shear yielding. The highest toughness occurs at an optimum EPDM‐g‐SAN phase particle size which is about 0.2 μm in SAN resin matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

15.
PS/AES blends were prepared by in situ polymerization of styrene in the presence of AES elastomer, a grafting copolymer of poly(styrene‐co‐acrylonitrile) – SAN and poly(ethylene‐co‐propylene‐co‐diene)–EPDM chains. These blends are immiscible and present complex phase behavior. Selective extraction of the blends' components showed that some fraction of the material is crosslinked and a grafting of PS onto AES is possible. The morphology of the noninjected blends consists of spherical PS domains covered by a thin layer of AES. After injection molding, the blends show morphology of disperse elastomeric phase morphology in a rigid matrix. Two factors could contribute to the change of morphology: (1) the stationary polymerization conditions did not allow the mixture to reach the equilibrium morphology; (2) the grafting degree between PS and AES was not high enough to ensure the morphological stability against changes during processing in the melting state. The drastic change of EPDM morphology from continuous to disperse phase has as consequence a decrease in the intensity of the loss modulus peaks corresponding to the EPDM glass transition. However, the storage modulus at temperatures between the glass transition of EPDM and PS/SAN phases does not change significantly. This effect was attributed to the presence of the SAN rigid chains in the AES. © 2009 Wiley Periodicals, Inc. Journal of Applied Polymer Science, 2009  相似文献   

16.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A series of poly(acrylonitrile‐butadiene‐styrene) (ABS) grafting modifiers were synthesized by emulsion grafting poly(acrylonitrile‐styrene) (SAN) copolymer onto polybutadiene (PB) latex rubber particles. The chain transfer reagent tert‐dodecyl mercaptan (TDDM) was used to regulate the grafting degree of ABS and the molecular weight of SAN copolymers. By blending these ABS modifiers with Chlorinated polyvinyl chloride (CPVC) resin, a series of CPVC/ABS blends were obtained. The morphology, compatibility, and the mechanical properties of CPVC/ABS blends were investigated. The scanning electron microscope (SEM) studies showed that the ABS domain all uniformly dispersed in CPVC matrix. Dynamic mechanical analyses (DMA) results showed that the compatibility between CPVC and SAN became enhanced with the TDDM content. From the mechanical properties study of the CPVC/ABS blends, it was revealed that the impact strength first increases and then decreases with the TDDM content, which means that the compatibility between CPVC and the SAN was not the only requirement for maximizing toughness. The decreasing of tensile strength and the elongations might attribute to the lower entanglement between chains of CPVC and SAN. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Solvent dependent changes in the compatibility behavior of Polychloroprene/Ethylene–propylene–diene terpolymer blends (CR/EPDM) have been investigated using dilute solution viscometry and solvent permeability analysis. To predict the compatibility of rubber blends of different compositions in solvents of different cohesive energy densities, Huggins interaction parameter (ΔB), hydrodynamic interaction (Δη) and Sun's parameter (α) were evaluated from the analysis of the specific and reduced viscosity data of two and three‐component polymer solutions. Miscibility criteria were not satisfied for CR/EPDM blends over the entire composition range in toluene, xylene, and carbon tetrachloride (CCl4), however, a narrow miscibility domain was observed in chloroform (CHCl3) for CR/EPDM/CHCl3 system. These results were further corroborated with the analysis of heat of mixing (ΔHm) and polymer–polymer interaction parameter (χ12), for all rubber blend compositions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The toughness behavior of PPO–SAN blends with the modifier poly(styrene‐block‐butadiene) (SBSB) and with poly(styrene‐block‐butadiene‐block‐methyl methacrylate) copolymers (SBM) under impact loading conditions has been investigated. The observed morphology of blends compatibilized with SBM, in which the rubber phase discontinuously accumulated at the PPO–SAN interface, correlated with about 20 times higher energy dissipation up to maximum force and about seven times higher deformation capacity compared to pure PPO–SAN blends. In contrast, the fracture behavior of the SBSB‐modified blends was not as strongly dependent on the rubber content. It is especially noteworthy that although the SBM modification resulted in a strong increase in toughness of the PPO–SAN blends, no decrease in stiffness could be found with up to 15% rubber additions. The values of Young's moduli remained at the same high level of the nonmodified material. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2037–2045, 2000  相似文献   

20.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号