首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了分子电子学的发展背景,并通过电极、分子以及电极-分子接触界面的分子结技术,对电极-分子-电极结中的电子传递现象进行了解释。另外,结合STM和裂分结技术,探讨了分子结中分子电子的测试方法,并对基于分子结中的分子电子器件的库仑阻塞、Kondo效应以及动力学随机记忆等进行了讨论。  相似文献   

2.
Organic–organic heterojunctions (OOHs) are critical features in organic light‐emitting diodes, ambipolar organic field‐effect transistors and organic solar cells, which are fundamental building blocks in low‐cost, large‐scale, and flexible electronics. Due to the highly anisotropic nature of π‐conjugated molecules, the molecular orientation of organic thin films can significantly affect the device performance, such as light absorption and charge‐carrier transport, as well as the energy level alignment at OOH interfaces. This Feature Article highlights recent progress in the understanding of interface energetics at small molecule OOH interfaces, focusing on the characterization and fabrication of OOH with well‐defined molecular orientations using a combination of in situ low‐temperature scanning tunneling microscopy, synchrotron‐based high‐resolution ultraviolet photoelectron spectroscopy and near‐edge X‐ray absorption fine structure measurements. The orientation dependent energy level alignments at the OOH interfaces will be discussed in detail.  相似文献   

3.
Thanks to the tremendous effort over the last 20 years, phosphorescent organic light-emitting diodes (PhOLEDs) represent a prevalent technology. In this technology, all the high-efficiency PhOLEDs are multi-layer devices constituting, in addition to the emissive layer (EML), of a stack of functional organic layers. These layers play a crucial role in the device performance as they improve the injection, transport, and recombination of charges within the EML. Single-layer PhOLEDs (SL-PhOLEDs) represent ideal OLEDs, consisting only of the electrodes and the EML. However, reaching high-performance SL-PhOLED is far from easy, as removing the functional layers of an OLED stack dramatically decreases the performance. To achieve high SL-PhOLED efficiency, the efficient injection, transport, and recombination of charges should be insured by the EML, and particularly, by the host material. In the present exhaustive review, the different molecular design strategies are analyzed, which have been used to construct high-efficiency hosts for SL-PhOLED. The impact of the electronic properties (triplet energy, HOMO/LUMO energy, mobility etc.) on the device characteristics (threshold voltage, electroluminescent spectrum, external quantum efficiency, etc.) are discussed. This allows to draw a structure/properties/device performance relationship map of interest for the future design of functional materials for SL-PhOLEDs.  相似文献   

4.
5.
The electrical properties of ferrocene‐alkanethiolate self‐assembled monolayers (SAMs) on a high yield solid‐state device structure are investigated. The devices are fabricated using a conductive polymer interlayer between the top electrode and the SAM on both silicon‐based rigid substrates and plastic‐based flexible substrates. Asymmetric electrical transport characteristics that originate from the ferrocene moieties are observed. In particular, a distinctive temperature dependence of the current (i.e., a decrease in current density as temperature increases) at a large reverse bias, which is associated with the redox reaction of ferrocene groups in the molecular junction, is found. It is further demonstrated that the molecular devices can function on flexible substrates under various mechanical stress configurations with consistent electrical characteristics. This study enhances the understanding of asymmetric molecules and may lead to the development of functional molecular electronic devices on both rigid and flexible substrates.  相似文献   

6.
We investigated the electronic properties of the molecular magnetic nanotoruses [FeIII 10LnIII 10(Me‐tea)10(Me‐teaH)10(NO3)10], examining the dependence on the lanthanide (Ln) of both the intra and intermolecular electronic channels. Using femtosecond absorption spectroscopy we show that the intramolecular electronic channels follow a three‐step process, which involves vibrational cooling and crossing to shallow states, followed by recombination. A comparison with the energy gaps showed a relationship between trap efficiency and gaps, indicating that lanthanide ions create trap states to form excitons after photo‐excitation. Using high‐resistance transport measurements and scaling techniques, we investigated the intermolecular transport, demonstrating the dominant role of surface‐limited transport channels and the presence of different types of charge traps. The intermolecular transport properties can be rationalized in terms of a hopping model, and a connection is provided to the far‐IR spectroscopic properties. Comparison between intra and intermolecular processes highlights the role of the excited electronic states and the recombination processes, showing the influence of Kramers parity on the overall mobility.  相似文献   

7.
In molecular electronics, it is critical to minimize the sources that can result in defective electrodes, such as contaminations related to the fabrication process (photoresist and organic residues) or roughening of the electrode during etching, because these defects hamper the formation of well‐organized molecular structures. Junctions based on micropores are desirable as they are scalable, but micropores are not fabricated on ultrasmooth template‐stripped electrodes, and may suffer from stray capacitances and leakage currents across the insulating matrix. A method is reported to fabricate micropores in AlOx on template‐stripped Au based on a two‐step etch process so that the Au surface is not in direct contact with photoresistance during the fabrication process. These junctions do not suffer from stray capacitances or leakage currents, enable temperature variable measurements down to 8.5 K, have excellent current retention characteristics, and are stable for at least 2 months. By analyzing the normalized differential conductance curves and detailed comparison against junctions with cone‐shaped tips of EGaIn and EGaIn stabilized in a through‐hole in polydimethylsiloxane, how the surface roughness of top electrodes affects the effective contact area, influences the symmetry of the response of the junctions, and how the electrical characteristics scale with molecular length are established.  相似文献   

8.
Molecular assemblies of surface‐confined heterometallic molecular dyads (SURHMDs) composed of optically rich and redox‐active Fe(pytpy)2·2PF6 (Fe‐PT), Ru(pytpy)2·2PF6 (Ru‐PT) and Os(pytpy)2·2PF6 (Os‐PT) pytpy = 4′‐(4‐pyridyl)‐2,2′:6′,2″‐terpyridyl] complexes are fabricated via bottom‐up approach on SiOx based solid supports. Pairing of the two different metal‐organic complexes at a single platform results in significant enlargement of the optical window (λ = 400–800 nm), which can be of interest for potential applications. The use of the Cu‐based linker ensures intramolecular electronic communication between these complexes. In addition, SURHMDs are electrochemically stable under large numbers of read‐write cycles (103) and exhibit multiple redox states at relatively low potentials (<1.2 V). Moreover, an electrochemical input at controlled potentials creates a mixed‐valence multicomponent system.  相似文献   

9.
10.
11.
A new family of highly soluble electrophosphorescent dopants based on a series of tris‐cyclometalated iridium(III) complexes (14) of 2‐(carbazol‐3‐yl)‐4/5‐R‐pyridine ligands with varying molecular dipole strengths have been synthesized. Highly efficient, solution‐processed, single‐layer, electrophosphorescent diodes utilizing these complexes have been prepared and characterized. The high triplet energy poly(9‐vinylcarbazole) PVK is used as a host polymer doped with 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD) for electron transport. Devices with a current efficiency of 40 cd A?1 corresponding to an EQE of 12% can thus be achieved. The effect of the type and position of the substituent (electron‐withdrawing group (CF3) and electron‐donating group (OMe)) on the molecular dipole moment of the complexes has been investigated. A correlation between the absorption strength of the singlet metal‐to‐ligand charge‐transfer (1MLCT) transition and the luminance spectral red shift as a function of solvent polarity is observed. The strength of the transition dipole moments for complexes 1–4 has also been obtained from TD‐DFT computations, and is found to be consistent with the observed molecular dipole moments of these complexes. The relatively long lifetime of the excitons of the phosphorescence (microseconds) compared to the charge‐carrier scattering time (less than nanoseconds), allows the transition dipole moment to be considered as a “quasi permanent dipole”. Therefore, the carrier mobility is sufficiently affected by the long‐lived transition dipole moments of the phosphorescent molecules, which are randomly oriented in the medium. The dopant dipoles cause positional and energetic disorder because of the locally modified polarization energy. Furthermore, the electron‐withdrawing group CF3 induces strong carrier dispersion that enhances the electron mobility. Therefore, the strong transition dipole moment in complexes 3 and 4 perturbs both electron and hole mobilities, yielding a reduction in exciton formation and an increase in the device dark current, thereby decreasing the device efficiency.  相似文献   

12.
Small 15 μm unit-cell mid-wavelength infrared (MWIR) detectors have been fabricated and characterized at Raytheon Vision Systems (RVS) to enable the development of high resolution, large format, infrared imaging systems. The detectors are fabricated using molecular beam epitaxy (MBE) grown 4-in. HgCdTe-on-Si wafers with a p-on-n double layer heterojunction (DLHJ) device architecture. Advanced fabrication processes, such as inductively coupled plasma (ICP) etching, developed for large format MBE-on-Si wafers and 20 μm unit-cell two-color triple layer heterojunction (TLHJ) focal plane arrays (FPAs) have been successfully extended and applied to yield high performance 15 μm unit-cell single color detectors that compare favorably with state-of-the-art detectors with larger pitch. The measured 78 K MWIR cut-off wavelength for the fabricated detectors is near 5.5 μm, and the current–voltage characteristics of these devices exhibit strong reverse breakdown and RoA performance as a function of temperature with diffusion limited performance extending to temperatures down to 120 K.  相似文献   

13.
14.
Modifying metal electrodes with self‐assembled monolayers (SAMs) has promising applications in organic and molecular electronics. The two key electronic parameters are the modification of the electrode work function because of SAM adsorption and the alignment of the SAM conducting states relative to the metal Fermi level. Through a comprehensive density‐functional‐theory study on a series of organic thiols self‐assembled on Au(111), relationships between the electronic structure of the individual molecules (especially the backbone polarizability and its response to donor/acceptor substitutions) and the properties of the corresponding SAMs are described. The molecular backbone is found to significantly impacts the level alignment; for molecules with small ionization potentials, even Fermi‐level pinning is observed. Nevertheless, independent of the backbone, polar head‐group substitutions have no effect on the level alignment. For the work‐function modification, the larger molecular dipole moments achieved when attaching donor/acceptor substituents to more polarizable backbones are largely compensated by increased depolarization in the SAMs. The main impact of the backbone on the work‐function modification thus arises from its influence on the molecular orientation on the surface. This study provides a solid theoretical basis for the fundamental understanding of SAMs and significantly advances the understanding of structure–property relationships needed for the future development of functional organic interfaces.  相似文献   

15.
The size‐dependence of the polarizability, susceptibility, and dielectric constant of nanometer‐scale molecular layers is explored theoretically. First‐principles calculations based on density functional theory are compared to phenomenological modeling based on polarizable dipolar arrays for a model system of organized monolayers composed of oligophenyl chains. Size trends for all three quantities are primarily governed by a competition between out‐of‐plane polarization enhancement and in‐plane polarization suppression. Molecular packing density is the single most important factor controlling this competition and it strongly affects the bulk limit of the dielectric constant as well as the rate at which it is approached. Finally, the polarization does not reach its “bulk” limit, as determined from the Clausius–Mossotti model, but the susceptibility and dielectric constant do converge to the correct bulk limit. However, whereas the Clausius–Mossotti model describes the dielectric constant well at low lateral densities, finite size effects of the monomer units cause it to be increasingly inaccurate at high lateral densities.  相似文献   

16.
A qualitative scheme that leads to the step‐by‐step construction of the band structure and Fermi surface of molecular conductors is developed based on a simple analytical treatment as well as some fundamental symmetry and overlap ideas and the concept of folding. This treatment is valuable in that it provides a detailed understanding of how the crystal and electronic structures of molecular conductors are related. Specifically, the proposed perspective clarifies how relatively weak structural changes can result in significant differences in the transport properties of these materials. Molecular conductors with donor layers of the β″‐type are used in order to illustrate the approach.  相似文献   

17.
Understanding the alignment of molecular orbitals and corresponding transmission peaks with respect to the Fermi level of the electrodes is a major challenge in the field of molecular electronics. In order to design functional devices, it is of utmost importance to assess whether controlled changes in the electronic structure of isolated compounds are preserved once they are inserted in the molecular junctions. Here, light is shed on this central issue by performing density functional theory calculations on junctions including diarylethene‐based molecules. It is demonstrated that the chemical potential equalization principle allows to rationalize the existence or not of a Fermi level pinning (i.e., same alignment in spite of a varying ionization potential in the isolated compounds), pointing to the essential role played by metal induced gap states (MIGS). It is further evidenced that the degree of level pinning is intimately linked to the degree of orbital polarization when a bias is applied between the two electrodes.  相似文献   

18.
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide‐angle X‐ray scattering) and GISAXS (grazing incidence small‐angle X‐ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.  相似文献   

19.
Function‐inspired design of molecular building blocks for their assembly into complex systems has been an objective in engineering nanostructures and materials modulation at nanoscale. This article summarizes recent research and inspiring progress in the design/synthesis of various custom‐made chiral, switchable, and highly responsive molecular building blocks for the construction of diverse covalent/noncovalent assemblies with tailored topologies, properties, and functions. Illustrating the judicious selection of building blocks, orthogonal functionalities, and innate physical/chemical properties that bring diversity and complex functions once reticulated into materials, special focus is given to their assembly into porous crystalline networks such as metal/covalent–organic frameworks (MOFs/COFs), surface‐mounted frameworks (SURMOFs), metal–organic cages/rings (MOCs), cross‐linked polymer gels, porous organic polymers (POPs), and related architectures that find diverse applications in life science and various other functional materials. Smart and stimuli‐responsive or dynamic building blocks, once embedded into materials, can be remotely modulated by external stimuli (light, electrons, chemicals, or mechanical forces) for controlling the structure and properties, thus being applicable for dynamic photochemical and mechanochemical control in constructing new forms of matter made to order. Then, an overview of current challenges, limitations, as well as future research directions and opportunities in this field, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号