首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We report the synthesis of a novel branched nano‐heterostructure composed of SnO2 nanowire stem and α‐Fe2O3 nanorod branches by combining a vapour transport deposition and a facile hydrothermal method. The epitaxial relationship between the branch and stem is investigated by high resolution transmission electron microscopy (HRTEM). The SnO2 nanowire is determined to grow along the [101] direction, enclosed by four side surfaces. The results indicate that distinct crystallographic planes of SnO2 stem can induce different preferential growth directions of secondary nanorod branches, leading to six‐fold symmetry rather than four‐fold symmetry. Moreover, as a proof‐of‐concept demonstration of the function, such α‐Fe2O3/SnO2 composite material is used as a lithium‐ion batteries (LIBs) anode material. Low initial irreversible loss and high reversible capacity are demonstrated, in comparison to both single components. The synergetic effect exerted by SnO2 and α‐Fe2O3 as well as the unique branched structure are probably responsible for the enhanced performance.  相似文献   

2.
3.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

4.
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self‐assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high‐performance lithium ion batteries. Flexible, free‐standing MoS2–reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self‐assembly process and subsequent freeze‐drying. This is the first report of a one‐pot self‐assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 °C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g?1 at a current density of 100 mA g?1. It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g?1.  相似文献   

5.
Building nanocomposite architectures based on nanocarbon materials (such as carbon nanotubes and graphene nanosheets) and metal‐oxide nanoparticles is of great interests for electrochemical energy storage. Here, an ionic‐liquid‐assisted strategy is presented to mediate the in situ growth of TiO2 nanocrystals with controlled size on carbon nanotubes and graphene, and also reduce the modified carbon supports to recover the graphitic structure simultaneously. The as‐prepared nanocomposites exhibit a highly porous and robust structure with intimate coupling between TiO2 nanocrystals and carbon supports, which offers facile ion and electron transport pathway as well as high mechanical stability. When evaluated as electrode materials for lithium‐ion batteries, the nanocomposites manifest high specific capacity, long cycling lifetime, and excellent rate capability, showing their promising application in high‐performance energy storage devices.  相似文献   

6.
Dark‐colored rutile TiO2 nanorods doped by electroconducting Ti3+ have been obtained uniformly with an average diameter of ≈7 nm, and have been first utilized as anodes in lithium‐ion batteries. They deliver a high reversible specific capacity of 185.7 mAh g?1 at 0.2 C (33.6 mA g?1) and maintain 92.1 mAh g?1 after 1000 cycles at an extremely high rate 50 C with an outstanding retention of 98.4%. Notably, the coulombic efficiency of Ti3+–TiO2 has been improved by approximately 10% compared with that of pristine rutile TiO2, which can be mainly attributed to its prompt electron transfer because of the introduction of Ti3+. Again the synergetic merits are noticed when the promoted electronic conductivity is combined with a shortened Li+ diffusion length resulting from the ultrafine nanorod structure, giving rise to the remarkable rate capabilities and extraordinary cycling stabilities for applications in fast and durable charge/discharge batteries. It is of great significance to incorporate Ti3+ into rutile TiO2 to exhibit particular electrochemical characteristics triggering an effective way to improve the energy storage properties.  相似文献   

7.
A novel synergistic TiO2‐MoO3 (TO‐MO) core–shell nanowire array anode has been fabricated via a facile hydrothermal method followed by a subsequent controllable electrodeposition process. The nano‐MoO3 shell provides large specific capacity as well as good electrical conductivity for fast charge transfer, while the highly electrochemically stable TiO2 nanowire core (negligible volume change during Li insertion/desertion) remedies the cycling instability of MoO3 shell and its array further provides a 3D scaffold for large amount electrodeposition of MoO3. In combination of the unique electrochemical attributes of nanostructure arrays, the optimized TO‐MO hybrid anode (mass ratio: ca. 1:1) simultaneously exhibits high gravimetric capacity (ca. 670 mAh g?1; approaching the hybrid's theoretical value), excellent cyclability (>200 cycles) and good rate capability (up to 2000 mA g?1). The areal capacity is also as high as 3.986 mAh cm?2, comparable to that of typical commercial LIBs. Furthermore, the hybrid anode was assembled for the first time with commercial LiCoO2 cathode into a Li ion full cell, which shows outstanding performance with maximum power density of 1086 W kgtotal ?1 (based on the total mass of the TO‐MO and LiCoO2) and excellent energy density (285 Wh kgtotal ?1) that is higher than many previously reported metal oxide anode‐based Li full cells.  相似文献   

8.
Herein, a novel polymer‐templated strategy is described to obtain 2D nickel‐based MOF nanosheets using Ni(OH)2, squaric acid, and polyvinylpyrrolidone (PVP), where PVP has a dual role as a structure‐directing agent, as well as preventing agglomeration of the MOF nanosheets. Furthermore, a scalable method is developed to transform the 2D MOF sheets to Ni7S6/graphene nanosheet (GNS) heterobilayers by in situ sulfidation using thiourea as a sulfur source. The Ni7S6/GNS composite shows an excellent reversible capacity of 1010 mAh g?1 at 0.12 A g?1 with a Coulombic efficiency of 98% capacity retention. The electrochemical performance of the Ni7S6/GNS composite is superior not only to nickel sulfide/graphene‐based composites but also to other metal disulfide–based composite electrodes. Moreover, the Ni7S6/GNS anode exhibits excellent cycle stability (≈95% capacity retention after 2000 cycles). This outstanding electrochemical performance can be attributed to the synergistic effects of Ni7S6 and GNS, where GNS serves as a conducting matrix to support Ni7S6 nanosheets while Ni7S6 prevents restacking of GNS. This work opens up new opportunities in the design of novel functional heterostructures by hybridizing 2D MOF nanosheets with other 2D nanomaterials for electrochemical energy storage/conversion applications.  相似文献   

9.
Lithium‐ion batteries are widely used as reliable electrochemical energy storage devices due to their high energy density and excellent cycling performance. The search for anode materials with excellent electrochemical performances remains critical to the further development of lithium‐ion batteries. Tungsten‐based materials are receiving considerable attention as promising anode materials for lithium‐ion batteries owing to their high intrinsic density and rich framework diversity. This review describes the advances of exploratory research on tungsten‐based materials (tungsten oxide, tungsten sulfide, tungsten diselenide, and their composites) in lithium‐ion batteries, including synthesis methods, microstructures, and electrochemical performance. Some personal prospects for the further development of this field are also proposed.  相似文献   

10.
11.
12.
Fiber‐shaped aqueous lithium‐ion capacitors (FALICs) featured with high energy and power densities together with outstanding safety characteristics are emerging as promising electrochemical energy‐storage devices for future portable and wearable electronics. However, the lack of high‐capacitance fibrous anodes is a major bottleneck to achieve high performance FALICs. Here, hierarchical MoS2@α‐Fe2O3 core–shell heterostructures consisting of spindle‐shaped α‐Fe2O3 cores and MoS2 nanosheet shells on a carbon nanotube fiber (CNTF) are successfully fabricated. Originating from the unique core/shell architecture and prominent synergetic effects for multi‐components, the resulting MoS2@α‐Fe2O3/CNTF anode delivers a remarkable specific capacitance of 2077.5 mF cm?2 (554.0 F cm?3) at 2 mA cm?2, substantially outperforming most of the previously reported fibrous anode materials. Further density functional theory calculations reveal that the MoS2@α‐Fe2O3 nano‐heterostructure possesses better electrical conductivity and stronger adsorption energy of Li+ than those of the individual MoS2 and α‐Fe2O3. By paring with the self‐standing LiCoO2/CNTF battery‐type cathode, a prototype quasi‐solid‐state FALIC with a maximum operating voltage of 2.0 V is constructed, achieving impressive specific capacitance (253.1 mF cm?2) and admirable energy density (39.6 mWh cm?3). Additionally, the newly developed FALICs can be woven into the flexible textile to power wearable electronics. This work presents a novel effective strategy to design high‐performance anode materials for next‐generation wearable ALICs.  相似文献   

13.
A critical bottleneck that hinders major performance improvement in lithium‐ion and sodium‐ion batteries is the inferior electrochemical activity of their cathode materials. While significant research progresses have been made, conventional single‐phase cathodes are still limited by intrinsic deficiencies such as low reversible capacity, enormous initial capacity loss, rapid capacity decay, and poor rate capability. In the past decade, layer‐based heterostructured cathodes acquired by combining multiple crystalline phases have emerged as candidates with a huge potential to realize performance breakthrough. Herein, recent studies on the structural properties, electrochemical behaviors, and synthesis route optimizations of these heterostructured cathodes are summarized for in‐depth discussions. Particular attention is paid to the latest mechanism discoveries and performance achievements. This review thus aims to promote a deeper understanding of the correlation between the crystal structure of cathodes and their electrochemical behavior, and offers guidance to design advance cathode materials from the aspect of crystal structure engineering.  相似文献   

14.
15.
Li2MnSiO4/C nanocomposite with hierarchical macroporosity is prepared with poly(methyl methacrylate) (PMMA) colloidal crystals as a sacrificial hard‐template and water‐soluble phenol‐formaldehyde (PF) resin as the carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirm that the periodic macropores are ≈400 nm in diameter with 20–40 nm walls comprising Li2MnSiO4/C nanocrystals that produce additional large mesopores (< 30 nm) between the nanocrystals. The nanostructured Li2MnSiO4/C cathode exhibits a high reversible discharge capacity of 200 mAh g?1 at C/10 (16 mA g?1) rate at 1.5–4.8 V at 45 °C. Although the discharge capacity can be further increased on operating at 55 °C, the sample exhibits a relatively fast capacity fade at 55 °C, which can be partially solved by simply narrowing the voltage window to avoid side reactions of the electrolyte. The good performance of the Li2MnSiO4/C cathodes is attributed to the unique macro‐/mesostructure of the silicate coupled with uniform carbon coating.  相似文献   

16.
Co3O4 anode materials exhibit poor conductivity and a large volume change, rendering controlling of their nanostructure essential to optimize their lithium storage performance. Carbon‐doped Co3O4 hollow nanofibers (C‐doped Co3O4 HNFs), for the first time are synthesized using bifunctional polymeric nanofibers as template and carbon source. Compared with undoped Co3O4 HNFs and solid Co3O4 NFs, C‐doped Co3O4 HNFs feature a remarkably high specific capacity, excellent cycling stability, and superior rate capacity as anode materials for lithium‐ion batteries. The superior performance of C‐doped Co3O4 HNFs electrodes can be attributed to their structural features, which confer enhanced electron transportation and Li+ ion diffusion due to C‐doping, and tolerance for volume change due to the 1D hollow structure. Density functional theory calculations provide a good explanation of the observed enhanced conductivity in C‐doped Co3O4 HNFs.  相似文献   

17.
As one of the emerging new transition‐metal dichalcogenides materials, molybdenum ditelluride (α‐MoTe2) is attracting much attention due to its optical and electrical properties. This study fabricates all‐2D MoTe2‐based field effect transistors (FETs) on glass, using thin hexagonal boron nitride and thin graphene in consideration of good dielectric/channel interface and source/drain contacts, respectively. Distinguished from previous works, in this study, all 2D FETs with α‐MoTe2 nanoflakes are dual‐gated for driving higher current. Moreover, for the present 2D dual gate FET fabrications on glass, all thermal annealing and lithography processes are intentionally exempted for fully non‐lithographic method using only van der Waal's forces. The dual‐gate MoTe2 FET displays quite a high hole and electron mobility over ≈20 cm2 V?1 s?1 along with ON/OFF ratio of ≈105 in maximum as an ambipolar FET and also demonstrates high drain current of a few tens‐to‐hundred μA at a low operation voltage. It appears promising enough to drive organic light emitting diode pixels and NOR logic functions on glass.  相似文献   

18.
In this study, partially crystalline anodic TiO2 with SiO2 well‐distributed througout the entire oxide film is prepared using plasma electrolytic oxidation (PEO) to obtain a high‐capacity anode with an excellent cycling stability for Li‐ion batteries. The micropore sizes in the anodic film become inhomogeneous as the SiO2 content is increased from 0% to 25%. The X‐ray diffraction peaks show that the formed oxide contains the anatase and rutile phases of TiO2. In addition, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray analyses confirm that TiO2 contains amorphous SiO2. Anodic oxides of the SiO2/TiO2 composite prepared by PEO in 0.2 m H2SO4 and 0.4 m Na2SiO3 electrolyte deliver the best performance in Li‐ion batteries, exhibiting a capacity of 240 µAh cm?2 at a fairly high current density of 500 µA cm–2. The composite film shows the typical Li–TiO2 and Li–SiO2 redox peaks in the cyclic voltammogram and a corresponding plateau in the galvanostatic charge/discharge curves. The as‐prepared SiO2/TiO2 composite anode shows at least twice the capacity of other types of binder‐free TiO2 and TiO2 composites and very stable cycling stability for more than 250 cycles despite the severe mechanical stress.  相似文献   

19.
A new transparent p‐type oxide semiconductor (POS) is reported, Cu2SnS3‐Ga2O3, having high Hall mobility of 36.22 cm2 V−1s−1, and high work function of 5.17 eV. The existence of Cu2SnS3 and Ga2O3 phases in the film is confirmed by X‐ray photoelectron spectroscopy results and the Cu2SnS3 shows polycrystalline structure according to Raman spectrum and X‐ray diffraction analysis. The transparent Cu2SnS3‐Ga2O3 exhibits the carrier concentration of 5.86 × 1016 cm−3, and electrical resistivity of 1.94 Ω·cm. The transparent POS is applied to green quantum light‐emitting diodes (QLEDs) as a hole injection layer (HIL) because of its high work function. The QLED exhibits the maximum current efficiency of 51.72 cd A−1, power efficiency of 31.97 lm W−1, and external quantum efficiency (EQE) of 14.93%, which are much higher than the QLED using polyethylene dioxythophene:poly(styrenesulfonate) HIL exhibiting current efficiency of 42.66 cd A−1, power efficiency of 20.33 lm W−1, and EQE of 12.36%. The Cu2SnS3‐Ga2O3 developed in this work can be widely used as a transparent and conductive p‐type oxide for thin‐film devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号