首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
We have recently reported that treatment of gonadectomized female and male C57/B1 mice with the gonadal steroid hormone, estrogen, reduced nigrostriatal dopaminergic neurotoxicity resulting from the Parkinson's-like inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the present report we examined whether the predominantly male gonadal steroid hormone, testosterone, would similarly modulate MPTP-induced neurotoxicity. Male C57/B1 mice were assigned to one of the following five treatment conditions: (1) Intact, (2) Orchidectomized, (3) Intact + MPTP, (4) Orchidectomized + Testosterone + MPTP and (5) Orchidectomized + MPTP. Corpus striatal and olfactory tubercle dopamine. DOPAC and norepinephrine concentrations were determined from the animals within each of the five treatment conditions. Orchidectomy alone failed to alter striatal dopamine and DOPAC concentrations, with levels obtained being similar to that of Intact animals. MPTP treatment significantly reduced striatal reduced striatal dopamine and DOPAC concentrations, regardless of hormonal condition of the animal. Similar results were obtained for olfactory tubercle determinations, with the exception that DOPAC levels from Orchidectomized mice were significantly greater than Intact males. No significant differences were obtained for norepinephrine within either brain area sampled. These results show that unlike estrogen, testosterone is devoid of any capacity to modulate nigrostriatal dopaminergic neurotoxicity resulting from MPTP. These findings may be related to the gender differences which exist in the prevalence of Parkinson's disease.  相似文献   

2.
A single low dose of the neurotoxin: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) results paradoxical sleep deprivation and reduction in food intake without any detectable motor deficiencies. In the present study we monitored the in vivo extracellular levels of monoamines and their metabolites following intraperitoneal (i.p.) administration of a single dose of MPTP (5 mg/kg). Microdialysates were collected from the ventrobasal thalamic nucleus (VB) of Halothane anesthetized rat. We found a significant decrease in noradrenaline (NA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) levels and a significant increase in 3,4-dihydroxyphenylalanine (DOPA) concentration whereas amino acid levels were unchanged throughout the 4-hour long perfusion. We found no significant difference in the post mortem release of NA and DOPA between the control and MPTP treated animals, suggesting that the intracellular NA pool were maintained. The above findings support the idea that the neurochemical mechanism of rapidly developing and transient behavioral changes induced by MPTP may be an immediate decrease in monoaminergic transmission and metabolism following MPTP injection.  相似文献   

3.
OPC-20011, a new parenteral 2-oxaisocephem antibiotic, has an oxygen atom at the 2- position of the cephalosporin frame. OPC-20011 had the best antibacterial activities against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae: MICs at which 90% of the isolates were inhibited were 6.25, 6.25, and 0.05 microg/ml, respectively. Its activity is due to a high affinity of the penicillin-binding protein 2' in MRSA, an affinity which was approximately 1,050 times as high as that for flomoxef. Against gram-negative bacteria, OPC-20011 also showed antibacterial activities similar to those of ceftazidime. The in vivo activities of OPC-20011 were comparable to or greater than those of reference compounds in murine models of systemic infection caused by gram-positive and -negative pathogens. OPC-20011 was up to 10 times as effective as vancomycin against MRSA infections in mice. This better in vivo efficacy is probably due to the bactericidal activity of OPC-20011, while vancomycin showed bacteriostatic activity against MRSA. OPC-20011 produced a significant decrease of viable counts in lung tissue at a dose of 2.5 mg/kg of body weight, an efficacy similar to that of ampicillin at a dose of 10 to 20 mg/kg on an experimental murine model of respiratory tract infection caused by non-ampicillin-susceptible S. pneumoniae T-0005. The better therapeutic efficacy of OPC-20011 was considered to be due to its potent antibacterial activity and low affinity for serum proteins of experimental animals (29% in mice and 6.4% in rats).  相似文献   

4.
The neurotoxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was tested on mice lacking the dopamine (DA) transporter (DAT-/- mice). Striatal tissue DA content and glial fibrillary acidic protein (GFAP) mRNA expression were assessed as markers of MPTP neurotoxicity. MPTP (30 mg/kg, s.c., b.i.d.) produced an 87% decrease in tissue DA levels and a 29-fold increase in the level of GFAP mRNA in the striatum of wild-type animals 48 h after administration. Conversely, there were no significant changes in either parameter in DAT-/- mice. Heterozygotes demonstrated partial sensitivity to MPTP administration as shown by an intermediate value (48%) of tissue DA loss. Direct intrastriatal infusion of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+; 10 mM), via a microdialysis probe produced a massive efflux of DA in wild-type mice (>320-fold). In the DAT-/- mice the same treatment produced a much smaller increase in extracellular DA (sixfold), which is likely secondary to tissue damage due to the implantation of the dialysis probe. These observations show that the DAT is a mandatory component for expression of MPTP toxicity in vivo.  相似文献   

5.
In 3- and 18-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), noradrenaline (NA), uric acid, glutathione (GSH) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined by HPLC in the striatum and/or in the brainstem 24 h after single injections of MPTP (12-35 mg/kg i.p.). Aged rats had lower baseline levels of AA and GSH, compared to young rats. In aged rats, MPTP 35 mg/kg induced a 70% death rate and a decrease in striatal DOPAC/DA ratio which was significantly correlated to MPP+ concentrations (r = -0.840, P < 0.005); in addition, MPTP did not increase AA oxidation. In the brainstem, the MPTP-induced decrease in NA levels and increase in uric acid levels were significantly correlated to the MPP+ concentrations (r = -0.709, P < 0.05, and r = +0.888, P < 0.001, respectively). In conclusion, evidence is given of a mechanism of toxicity of MPTP involving oxidative stress produced by xanthine oxidase; in addition, in aged rats the neuronal antioxidant system (levels of AA and GSH) is considerably lower than in young rats and may play an enabling role in the MPTP age-related neurotoxic effects on striatum and brainstem.  相似文献   

6.
Loss of nigrostriatal neurons leads to striatal dopamine deficiency and subsequent development of parkinsonism. The effects of this denervation on D2-like receptors in striatum remain unclear. Most studies have demonstrated increases in striatal dopamine D2-like receptors in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated denervation, but others have found either decreases or no change in binding. To clarify the response to denervation, we have investigated the time-dependent changes in dopamine D2, D3, and D4 receptor protein and mRNA levels in unilaterally MPTP-lesioned baboons. MPTP (0.4 mg/kg) was infused into one internal carotid artery, producing a contralateral hemi-parkinsonian syndrome. After MPTP treatment, the animals were maintained for 17-480 d and then euthanized. MPTP decreased ipsilateral dopamine content by >90%, which did not change with time. Ipsilateral D2-like receptor binding in caudate and putamen initially decreased then increased two- to sevenfold over the first 100 d and returned to near baseline levels by 480 d. Relative levels of D2 mRNA were essentially unchanged over this period. D4 mRNA was not detected. In contrast, D3 mRNA increased sixfold by 2 weeks and then decreased. At the peak period of increase in binding sites, all D2-like receptors were in a micromolar affinity agonist-binding state, implying an increase in uncoupled D2 but not D3 receptor protein. Taken together, these data suggest that MPTP-induced changes in D2-like dopamine receptors are complex and include translational or post-translational mechanisms.  相似文献   

7.
In Experiment 1, groups of mice were administered either saline or MPTP (2 x 30 mg/kg, s.c., separated by a 24-hr interval) 30 min after being injected either PBN (15, 50 or 150 mg/kg, s.c., low, medium and high doses, respectively) or L-Deprenyl (0.25 or 10.0 mg/kg, s.c., low and high doses, respectively), the reference compound used, or saline. Tests of spontaneous motor activity 14 days later indicated that the MPTP-induced hypokinesia for locomotion and rearing was alleviated by prior administration with PBN (50 or 150 mg/kg) or L-Deprenyl (10.0 mg/kg); lower doses of PBN (15 mg/kg) and L-Deprenyl (0.25 mg/kg) did not affect the MPTP-induced deficits. Dopamine (DA) concentrations in the striatum confirmed a more severe loss of DA in the MPTP, PBN (15) + MPTP and Deprenyl(0.25) + MPTP groups than in the control group. Significant protection of DA was observed in the PBN(50) + MPTP, PBN(150) + MPTP and Deprenyl(10) + MPTP groups that did not exhibit an hypokinetic behaviour. In Experiment 2, the effects of repeated treatment with PBN (50 mg/kg, s.c. over 12 days), post-MPTP, were studied in aged (15-month-old) and young (3-month-old) mice. Subchronic administration of PBN increased substantially the motor activity of old and young mice that had received MPTP. Aged control (saline) mice showed an activity deficit compared to young control mice; this deficit was abolished by repeated PBN treatment. The results suggest that moderate-to-high doses of PBN whether injected in a single dose prior to MPTP or subchronically following MPTP injections may afford protective effects against both the functional changes and DA-loss caused by MPTP treatment, possibly through an antioxidant mechanism.  相似文献   

8.
The sensitivity of dopamine D2-like receptors in morphine-withdrawn rats was studied using the selective agonist quinpirole. Morphine was administered twice daily increasing the daily dose from 20 to 50 mg/kg during 7 days. Twenty-four hours after the last morphine administration the rats were given quinpirole (0.01-1 mg/kg) and their behavior was assessed. Withdrawal from repeated morphine treatment enhanced yawning behavior and penile erections induced by small doses (0.01-0.1 mg/kg) as well as the intensity of stereotypy induced by a large dose (1.0 mg/kg) of quinpirole. In the morphine-withdrawn rats the dose of 1 mg/kg of quinpirole caused less yawning than in the control rats, whereas the number of erections induced by this dose was enhanced as compared with the control animals. In the control rats, the striatal and limbic concentrations of dopamine metabolites, 3,4-dihydroxphenylacetic acid (DOPAC), and homovanillic acid (HVA), were not clearly affected by the smallest dose of quinpirole. However, the small dose of quinpirole (0.01 mg/kg) significantly reduced the levels of DOPAC and HVA in the striatum and limbic forebrain of the rats withdrawn from morphine either for 24 or 48 h. These findings indicate that withdrawal from repeated morphine treatment enhances the sensitivity of dopamine D2-like receptors.  相似文献   

9.
The growth of tumours in guinea-pigs was observed for 20 weeks after placing them on various doses of vitamin C. Complete tumour regression occurred in 55% of those animals receiving 0-3 mg/kg/day ascorbic acid, whereas animals given 10 mg/kg/day showed tumour inhibition but no regression. In contrast, tumours in animals maintained on 1 g/kg/day ascorbic acid grew without sign of retardation. When increased amounts of ascorbic acid were restored to the diet of scorbutic tumour-bearing animals, tumours which had not regressed responded with enhanced growth. Likewise, animals previously maintained on 10 mg/kg ascorbic acid responded in turn to the additional vitamin with enhanced tumour growth. In contrast, all tumour-bearing animals maintained on 1 g/kh ascorbic acid died within 3 weeks when this dose was replaced with 0-3 mg/kg.  相似文献   

10.
Changes in extracellular levels of dopamine (DA), DA metabolites DOPAC and HVA, and the serotonin metabolite 5-HIAA, were measured by microdialysis in the rat nucleus accumbens (n. acc) after treatments with serotonin (5-HT)1A (8-OH-DPAT) or 5-HT1B (RU 24969 and S-CM-GTNH2) receptor agonists. Subcutaneous injections of RU 24969 (0.02-2 mg/kg) dose-dependently decreased 5-HIAA levels (0 to -38%), and also induced long-lasting increases in DA levels (0 to +37%) and DOPAC (+11% at the dose 0.5 mg/kg) in the shell of the n. acc, whereas 8-OH-DPAT (0.25 and 0.5 mg/kg) reduced 5-HIAA levels (-25%) and very slightly increased DOPAC at the lower dose (+4%), but had no effect on DA levels. Three weeks after interruption of the subicular efferent projections, the increase in DA levels previously observed after systemic injections of RU 24969 was abolished. Microinjections of RU 24969 (10 micrograms/microliter) or S-CM-GTNH2 (3 micrograms/microliter) into the ventral subicular area reproduced the effects of systemic injections of RU 24969 cn DA levels and increased DOPAC (+13%; +19%, respectively) and HVA levels (+23%; +24%), with no significant change in 5-HIAA. It is concluded that: (1) serotonin interacts with the mesolimbic dopaminergic system through 5-HT1B, but not 5-HT1A, receptors: and (2) serotonin interaction with the mesolimbic dopaminergic system involves postjunctional 5-HT1B heteroreceptors located in the ventral subicular area, which modulate the activity of glutamatergic hippocampo-accumbens pathways and only secondarily alter DA levels in the n. acc. The possible relevance of these results for schizophrenia is discussed.  相似文献   

11.
In vivo brain microdialysis was used to investigate the influence of lobeline on dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) overflow in the core of the nucleus accumbens of freely-moving rats pretreated with nicotine (0.4 mg x kg(-1), s.c., once per day for 5 days). Locomotion was also recorded. Lobeline, at doses of 0.7, 4.0 and 10.0 mg x kg(-1), i.p., failed to elicit any significant changes in extracellular dopamine or dihydroxyphenylacetic acid levels during the 60 min following its administration and did not stimulate locomotor. The dopamine responses to nicotine (0.4 mg x kg(-1), s.c.), were abolished (P<0.01) if the nicotine challenge was administered 10 min but not 60 min, after lobeline doses of 4.0 and 10.0 mg kg(-1), i.p., but were unaffected following lobeline at the lowest dose tested (0.7 mg x kg(-1), i.p.) at either time. The increase in locomotor activity was significantly attenuated (P<0.01), to a similar extent, when the nicotine was injected 10 min, but not 60 min, after all three doses of lobeline (0.7, 4.0 and 10.0 mg kg(-1), i.p.) when compared with the saline-treated rats. The results suggest that lobeline is a short-acting antagonist of the nicotinic AChRs which mediate the effects of nicotine on mesolimbic dopamine activity and locomotor stimulation.  相似文献   

12.
The purpose of this investigation was to quantitatively describe the time courses of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations in the striatum after L-dopa injection using a constructed dopamine metabolism model. The time courses of dopamine, DOPAC and HVA concentration in the striatum of rats was determined before and after the rapid i.v. injection of 10, 50 and 100 mg/kg using the same animals as in the previous report. The endogenous dopamine, DOPAC and HVA concentrations in the striatum before L-dopa administration were 5.9 +/- 0.7 micrograms, 3.6 +/- 0.4 micrograms and 1.0 +/- 0.2 micrograms/g, respectively. The dopamine concentration in the striatum increased immediately after L-dopa injection, with the peak concentration (15.9 +/- 0.5 micrograms/g) occurring at 3 min; then it returned to the pre-medication level until 2 h at 100 mg/kg dosing. The time course of dopamine concentration in the striatum was analyzed on a constructed dopamine metabolism model which has a zero-order production rate for the production of dopamine (i.e. release from the dopamine neuronal terminals) and two apparent first-order clearance terms, one from L-dopa to dopamine, which was estimated in the previous report, and the other from dopamine to dopamine metabolites (DOPAC and HVA). However, the time course of dopamine concentration in the striatum could not be described by this model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/-) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/- mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/- and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/- mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/- and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/- mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/- mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/- mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

14.
The mouse peripheral blood micronucleus assay, a measure of DNA damage in erythroblastic cells, was used to determine: (1) the incidence of spontaneously occurring micronucleated reticulocytes (MNRETs) as a function of age, and (2) the induction of micronuclei following treatment of young and old animals with mitomycin C. Male C57BL/6 mice, 92 weeks of age, exhibited a significantly higher frequency of spontaneously occurring peripheral blood MNRETs than mice that were 6 or 10 weeks of age. Mice that were 5-6 weeks or 91-92 weeks old were treated with one dose, or two consecutive doses of mitomycin C; this resulted in dose-related increases in the frequency of MNRETs. Mitomycin C, at a single dose of 1 or 2 mg/kg, induced one-third as many MNRETs in the older animals as compared to the younger animals. When treated with a split dose of mitomycin C (total dose 0.5 to 2 mg/kg), older animals displayed on average two-thirds the mutagenic response of the younger animals. However, analysis of variance performed on these data indicated that the age of the animals did not have a significant effect on their mutagenic response to mitomycin C at any dose level. It appears that aging mice may not be more sensitive to the mutagenic effects of chemically-induced DNA damage than younger mice, suggesting that the higher spontaneous mutation frequency in older mice could be the result of an increased load of accumulated DNA damage.  相似文献   

15.
Psychological dependence was induced in rats by a 1-year intermittent exposure to intoxicating doses of ethanol, and recorded by the rat's ability to later take the same dose of ethanol independent of the offered concentration. Citalopram (10 or 40 mg/kg/day) was given for 3 weeks with ethanol available only the first and the last day; 10 mg/kg had no effect. On the first treatment day 40 mg/kg decreased ethanol intake. On the last treatment day 40 mg/kg had no effect. The following week the ethanol intake was higher than before the treatment in the 40 mg/kg group. During the four posttreatment weeks the ethanol intake of the 40 mg/kg group dropped significantly. Citalopram was retested 18 weeks after the first treatment during 1 week, with continuous access to ethanol; 10 mg/kg had no effect and 40 mg/kg decreased ethanol intake at day 1, reaching a minimum in day 3. A tolerance to this effect was seen at the end of the week. Thus, in this model an acute dose of citalopram can decrease ethanol intake, but tolerance to this effect develops when citalopram is given both with and without access to ethanol.  相似文献   

16.
Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced locomotor sensitization, the protective effect of melatonin observed in the present study may be due primarily to diminishing METH-induced hyperthermia.  相似文献   

17.
Microdialysis measurements of dopamine (DA) and DA metabolites were carried out in the putamen and substantia nigra of unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rhesus monkeys that received intraventricular injections of vehicle or glial-derived neurotrophic factor (GDNF, 300 microg) 3 weeks prior to the microdialysis studies. Following behavioral measures in the MPTP-lesioned monkeys, they were anesthetized with isoflurane and placed in a stereotaxic apparatus. Magnetic resonance imaging (MRI)-guided sterile stereotaxic procedures were used for implantations of the microdialysis probes. Basal extracellular levels of DA and the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were found to be decreased by >95% in the right putamen of the MPTP-lesioned monkeys as compared to normal animals. In contrast, basal DA levels were not significantly decreased, and DOPAC and HVA levels were decreased by only 65% and 30%, respectively, in the MPTP-lesioned substantia nigra. Significant reductions in d-amphetamine-evoked DA release were also observed in the MPTP-lesioned substantia nigra and putamen of the monkeys as compared to normal animals. A single intraventricular administration of GDNF into one group of MPTP-lesioned monkeys elicited improvements in the parkinsonian symptoms in these animals at 2-3 weeks post-administration. In addition, d-amphetamine-evoked overflow of DA was significantly increased in the substantia nigra but not the putamen of MPTP-lesioned monkeys that had received GDNF. Moreover, post-mortem brain tissue studies showed increases in whole tissue levels of DA and DA metabolite levels primarily within the substantia nigra in MPTP-lesioned monkeys that had received GDNF. Taken together, these data support that single ventricular infusions of GDNF produce improvements in motoric behavior in MPTP-lesioned monkeys that correlate with increases in DA neuronal function that are localized to the substantia nigra and not the putamen.  相似文献   

18.
The pathophysiology of dystonia is unclear, but several clues implicate striatal dopamine dysfunction. In contrast, the causal relationship between striatal dopamine deficiency and parkinsonism is well defined. We now suggest that parkinsonism or dystonia may occur following striatal dopamine deficiency. Baboons treated with intracarotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) developed transient hemidystonia prior to hemiparkinsonism. The day after MPTP treatment, most animals had spontaneous ipsilateral turning. Within a few days, all developed contralateral hemidystonia, with the arm and leg extended and externally rotated. This transient dystonia preceded hemiparkinsonism with flexed posture, bradykinesia, and postural tremor that persisted for up to 1.5 years. Dystonia corresponded temporally with a decreased striatal dopamine content and a transient decrease in D2-like receptor number. The time course of dystonia and parkinsonism is analogous to lower limb dystonia as the first, frequently transient, symptom of Parkinson's disease in humans. The association of striatal dopamine deficiency with dystonia and parkinsonism implies that other factors influence clinical manifestations.  相似文献   

19.
The effects of deprenyl on methamphetamine-induced dopamine depletions were studied in mice. Four SC injections of 12.5 mg/kg of methamphetamine at two-hour intervals caused substantial (72-82%) and long-lasting depletions of striatal dopamine. Pretreatment with either 25 or 40 mg/kg of deprenyl did not significantly alter the magnitude of this depletion. These results indicate that, unlike what is observed following MPTP, there is no protection afforded dopaminergic cells by deprenyl pretreatment in the methamphetamine model of parkinsonism.  相似文献   

20.
BACKGROUND: Left ventricular (LV) dilation, which is a predictor of survival in humans with chronic heart failure (CHF), is limited by a mixed endothelin ETA-ETB antagonist. Whether selective ETA receptor blockade influences LV dilation is unknown. We determined, in a rat model of CHF, the effects of the ETA receptor blocker LU 135,252 on LV remodeling. METHODS AND RESULTS: Rats were subjected to coronary artery ligation and treated for ten weeks with placebo or LU 135,252 (LU), at a dose of 10 or 30 mg kg-1 day-1. Systolic blood pressure and heart rate (plethysmography) were determined in conscious animals before and after four and ten weeks of treatment. At these time points, cardiac output and LV dimensions were measured in anesthetized rats by transthoracic echocardiography. LV hemodynamics were determined in anesthetized rats after ten weeks. Pressor responses to ET-1 (1 nmol/kg, i.v.) and sarafotoxin S6c (0.3 ng/kg, i.v.) were measured, to assess the efficacy of ET receptor antagonism and the lack of blockade of ETB receptor blockade, respectively. The pressor response to ET-1 was significantly reduced by LU (% change in systolic blood pressure: sham: 9 +/- 1; CHF: 5 +/- 1; CHF LU: 0 +/- 3 and -4 +/- 2% for the low and high dose, respectively). LU did not affect the response to sarafotoxin (CHF: -37 +/- 3; CHF LU: -29 +/- 3 and -28 +/- 2% for the low and high dose, respectively). Both doses of LU decreased systolic blood pressure, but only the high dose of LU reduced heart rate. Furthermore, LU restored cardiac output dose-dependently throughout the study. Both doses of LU limited LV dilatation and deterioration of LV fractional shortening to the same extent. After ten weeks, LU normalized LV end-diastolic- and central venous pressures, but did not affect LV dP/dtmax or dP/dtmin. LU did not prevent the development of cardiac hypertrophy, but reduced LV collagen density. CONCLUSIONS: In this rat model, the selective ETA receptor blocker LU, at the dose of 30 mg kg-1 day-1, reduced blood pressure and heart rate, limited progressive left ventricular remodeling and improved cardiac hemodynamics and function. These effects of LU might have important clinical relevance in the treatment of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号