首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study production of fine particle Fe2O3 via microwave processing of Fe(NO3)3.nH2O followed by low temperature annealing was reported. XRD was used to characterize the structural properties of nanoparticles. Approximate particle sizes were between 3-13 nm according to Scherrer's equation. Single point BET measurement results also show that samples have large surface area and they are nanometer sized particles. TEM study was conducted to examine the structure of the nanoparticles. TEM figure is in good agreement with the results obtained from Scherrer's equation using XRD spectra. In order to characterize the magnetic properties of the nanoparticles VSM (Vibrating Sample Magnetometer) was used. From these results it can be concluded that the sample containing only maghemite phase exhibits superparamagnetic behaviour, on the other hand sample containing both hematite and maghemite phases shows paramagnetic behaviour above 300 K, superparamagnetic behavior at lower temperatures.  相似文献   

2.
Iron nanopowders ranging in particle size from 20 to 100 nm have been synthesized by reducing a 1-mm-thick iron(III) hydroxide layer in flowing hydrogen at 400°C and then passivated for 6–60 min in flowing argon containing 3% air. Our results demonstrate that the passivated iron nanopowders do not oxidize in air for six months. The iron nanoparticles have been characterized by X-ray diffraction (crystallite size evaluation), Auger electron spectroscopy, and polymolecular adsorption. The passivated iron nanoparticles have been shown to consist of a metallic core and oxide shell 2–4 nm in thickness.  相似文献   

3.
Bharat Bajaj 《Thin solid films》2010,519(3):1219-1223
Amine modified iron oxide (Fe3O4) nanoparticles were synthesized by thermal decomposition method and were further used to bio-functionalize by grafting of N-hydroxysuccinimide (NHS) ester of folate and ethylenediaminetetraacetate (EDTA). Fe3O4 nanoparticles of ~ 22 nm were confirmed from X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. FT-IR studies indicated two bands at 1515 cm− 1and 1646 cm− 1, which can be attributed to carboxylic group and the amide linkage respectively, revealing the conjugation of folate with Fe3O4. The conjugation of the chelating agent showed strong C=O stretch and Fe-O vibrations at 1647 and 588 cm− 1 respectively. The value of saturation magnetization for Fe3O4 nanoparticles was found to be 88 emu/g, which further reduced to 18 and 32% upon functionalization with EDTA and NHS ester folate, respectively. These amine modified Fe3O4 nanoparticles can also be functionalized with other bifunctional chelators, such as amino acids based diethylene triamine pentaacetic acid (DTPA), and thus find potential applications in radio-labeling, biosensors and cancer detection, etc.  相似文献   

4.
In order to get high water solubility, monodisperse, superparamagnetic nanoparticles, poly (acrylic acid) was employed to modify Fe3O4 by a high-temperature solution-phase hydrolysis approach. Then, folic acid (FA) and fluorescein isothiocyanate were successively conjugated with prepared magnetic nanoparticles (MNPs). The functional MNPs were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscope (TEM), inductively coupled plasma-atomic emission spectrometer (ICP-AES), and vibrating sample magnetometer (VSM), respectively. The toxicity of the materials was evaluated by selecting NIH/3T3 fibroblast cells and no toxic effect was observed. The fluorescent imaging and targeting property of the MNPs were also realized in vitro and in vivo experiments by confocal laser scanning microscopy (CLSM) and Kodak In-Vivo FX Professional Imaging System, respectively. The results indicated that the final products exhibited interesting magnetic, optical and targeting properties for further potential applications in biological and biomedical fields.  相似文献   

5.
Copolymer brushes grafting onto magnetic nanoparticles (MNPs) were prepared via surface free radical polymerization to improve antifouling properties of thermosensitive MNPs. A chain transfer agent was firstly attached to MNPs by silanization. Copolymerization of poly(ethylene glycol) monomethacrylate and N-isopropylacrylamide was then conducted to graft polymer brushes on the particles surface via surface free radical polymerization. The lower critical solution temperature of the obtained thermosensitive MNPs is 43 °C, which is higher than that of homopolymer poly(N-isopropylacrylamide). Nonspecific adsorption of protein was resisted at room temperature and 45 °C. The result suggested that poly(ethylene glycol) monomethacrylate segments decrease nonspecific adsorption of protein above LCST.  相似文献   

6.
Magnetic iron oxide nanoparticles are synthesized by suitable modification of the standard synthetic procedure without use of inert atmosphere and at room temperature. The facile synthesis procedure can be easily scaled up and is of important from industrial point of view for the commercial large scale production of magnetic iron oxide nanoparticles. The synthesized nanoparticles were characterized by thermal, dynamic light scattering, scanning electron microscopy and transmission electron microscopy analyses.  相似文献   

7.
通过共沉淀法制备氧化铁磁性纳米颗粒,用壳聚糖对其表面进行修饰得到样品(CS@MNPs);表征其形貌结构、尺寸、表面基团、表面电荷、磁学性质和在不同介质中的稳定性等。实验结果表明,CS@MNPs具有典型的立方反尖晶石晶体结构;粒径为16.5nm;在生理(pH值7.4)条件下拥有较高的正电荷(10mV);呈现超顺磁性,对驰豫时间T1、T2,尤其是T2*具有很强的响应;在双蒸馏水和含10%新生牛血清的RPMI 1640培养液中具有良好的稳定性,具有作为磁共振造影剂的潜力。  相似文献   

8.
Iron oxide nanoparticles dispersed in aluminum (Al) or silicon (Si) oxides were prepared via a polymeric precursor derived from the Pechini method. The samples were characterized by thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, N2 adsorption/desorption isotherms (Brunauer–Emmett–Teller, BET), M?ssbauer spectroscopy, and vibrating sample magnetometry (VSM). BET analysis shows that the samples are mesoporous materials and have a high surface area. The size of the Fe2O3 nanoparticles in Al2O3 is smaller than that in SiO2. M?ssbauer spectra of the samples show that the Fe2O3 nanoparticles in Al2O3 are non-magnetic at room temperature but magnetic below 50 K. The FeSi samples are magnetic at both room and low temperatures. The magnetic measurements with VSM confirmed this point.  相似文献   

9.
Zeolite framework stabilized copper(I) oxide nanoparticles (4.8 ± 2.6 nm) were prepared for the first time by using a four step procedure: the ion exchange of Cu2+ ions with the extra framework Na+ ions in Zeolite-Y, the reduction of the Cu2+ ions within the cavities of zeolite with sodium borohydride in aqueous solution, the dehydration of Zeolite-Y with the copper(0) nanoclusters, and the oxidation of intrazeolite copper(0) nanoclusters by O2 at room temperature. Zeolite stabilized copper(I) oxide nanoparticles were thoroughly characterized by ICP-OES, XRD, HR-TEM, Raman, XPS, UV-vis spectroscopy and N2 adsorption-desorption technique.  相似文献   

10.
In this communication, a conceptually new approach to the delivery of magnetic resonance imaging (MRI) contrast agents is presented. Our experiments demonstrate the feasibility of using silica-embedded iron oxide nanoparticles as contrast agents in magnetic resonance imaging, where a reduction in signal intensity (increased contrast) in the T2-weighted images is observed. The surface of these particles can be chemically modified by attachment of polyethylene glycol molecules, which are found to reduce nonspecific protein binding. The design of the nanoparticle is universal and flexible and allows for facile addition or interchange of its active components (i.e., MRI contrast agents and targeting moiety) with photodynamic dyes.  相似文献   

11.
In this study, we prepared magnetic iron oxide and gold/iron oxide nanoparticles (NPs) and characterized their morphologies and properties by XRD, TEM, EDX, VSM and UV-vis measurements. The magnetite iron oxide NPs of 10 nm were synthesized by coprecipitation of Fe2+ and Fe+3 in the solution of NH4OH and then they were used as seed particles for the subsequent growth to prepare the magnetite NPs of different particle sizes and also to prepare gold/iron oxide composite NPs. All those magnetite NPs are superparamagnetic and the gold/iron oxide composite NPs combine the optical and magnetic properties, which are contributed by gold and iron oxide components, respectively.  相似文献   

12.
Silica coated iron oxide nanoparticles were prepared using non-transferred arc plasma. The plasma was discharged with argon. Vapors of iron pentacarbonyl (Fe(CO)5) and tetraethyl orthosilicate (TEOS, Si(OC2H5)4) were injected into a plasma torch with carrier gas and reacted in the plasma chamber. In addition, two types of reaction chambers that are a hot wall reactor and a cold wall reactor were used to investigate the effect of temperature gradient on the synthesis of silica coated iron oxide nanoparticles. The synthesized nanoparticles were collected on the chamber wall and bottom. Phase compositions of the obtained nanoparticles were characterized by X-ray diffractometer (XRD) and the morphologies and the size distributions of the synthesized particles were analyzed by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Additionally, elements mapping of the coated particles was performed by energy dispersive spectroscopy (EDS). The phase composition of the prepared particles was mainly composed of amorphous silica and polycrystalline Fe3O4. It was confirmed that the silica was adsorbed on iron oxide particles or encapsulated iron oxide particles. Furthermore, the mechanism of the formation of silica coated iron oxide in the plasma chamber was predicted.  相似文献   

13.
Iron and iron oxide nanoparticles in silica layers deposited by sol–gel techniques on Si wafers were formed and studied. It was shown that multifunctional nanoparticles of different iron oxides possessing various physical properties can be fabricated by means of post-growth annealing of (SiO2:Fe)/SiO2/Si samples in various atmospheres. The hematite, maghemite, and iron nanoparticles were found to be dominant upon annealing the samples in air, argon, and hydrogen atmosphere, respectively. The physical properties of produced hybrid structures were studied by Raman and FT-IR spectroscopy, spectroscopic ellipsometry, AFM, and magnetic measurements. The sol–gel technique with subsequent annealing procedure is demonstrated to be an effective method for the formation of multifunctional hybrid structures composed of iron or iron oxide nanoparticles in silica matrix.  相似文献   

14.
This work reports a new strategy for delivering nitric oxide (NO), based on magnetic nanoparticles (MNPs), with great potential for biomedical applications. Water-soluble magnetic nanoparticles were prepared through a co-precipitation method by using ferrous and ferric chlorides in acidic solution, followed by a mercaptosuccinic acid (MSA) coating. The thiolated nanoparticles (SH-NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results showed that the SH-NPs have a mean diameter of 10 nm and display superparamagnetic behavior at room temperature. Free thiol groups on the magnetite surface were nitrosated through the addition of an acidified nitrite solution, yielding nitrosated magnetic nanoparticles (SNO-NPs). The amount of NO covalently bound to the nanoparticles surface was evaluated by chemiluminescense. The SNO-NPs spontaneously released NO in aqueous solution at levels required for biomedical applications. This new magnetic NO-delivery vehicle has a great potential to generate desired amounts of NO directed to the target location.  相似文献   

15.
采用沉淀方法制备了直径分布狭窄的均匀Fe3O4纳米颗粒.Fe3O4纳粒形体几近一致,平均粒径为10.33 nm±2.99 nm(平均粒径±标准偏差).在超声作用下将MgO纳米颗粒分散在一定量Fe3O4纳米颗粒的水溶液中获得MgO负载Fe3O4的纳米颗粒.以甲烷为碳源,Fe3O4/MgO为催化剂,经化学气相沉积,在Fe3O4纳粒上制得了大量直径近乎均匀的单壁碳纳米管(SWCNTs)束.TEM显示:SWCNTs的平均直径1.22rm.热重分析显示:样品在400℃~600℃温度区间失重量约19%.拉曼光谱显示:SWCNTs的ID/IG的强度比为0.03,表明采用Fe3O4/MgO催化剂可制得高石墨化程度的单壁碳纳米管.  相似文献   

16.
17.
A novel method for preparing uncoated iron oxide nanoparticles by thermal decarboxylation of iron hydroxide cetylsulfonyl acetate in solution followed by heating under the protection of nitrogen was presented. The thermal decarboxylation of the precursor and the formation of iron oxide were monitored by FTIR and XRD, the vibrations of alkyl and sulfonyl groups vanished after refluxing in tetraline and uncoated maghemite was obtained after heating treatment at 400 °C. The sizes and morphologies of the obtained samples were studied by TEM. The particles were about 3 nm after refluxing and 8 nm after calcining at 400 °C but agglomerated due to the absence of capping ligands.  相似文献   

18.
19.
《Materials Letters》2006,60(17-18):2217-2221
Fibrous shape γ-Fe2O3 nanoparticles (the length of ∼850 nm; the width of ∼5 nm) have been prepared using lauryl alcohol as a nonaqueous medium. The resultant products were investigated by IR, TG–DTA, XRD, TEM and magnetization measurements. For the preparation of pure γ-Fe2O3 nanoparticles, the suitable condition of the molar ratio of lauryl alcohol to iron nitrate is determined to be 1 : 2 and the appropriate temperature is in the range of 300–400 °C. The magnetization measurements reveal that the obtained γ-Fe2O3 particles possess better magnetic properties for application in magnetic recording. It can be concluded that lauryl alcohol plays an important role not only in controlling the dimension, shape of the products, but also in helping the increase of magnetic properties.  相似文献   

20.
In this study, a new thermosensitive material was proposed as a carrier for gene delivery. The thermosensitive submicron particles were synthesized by the dispersion copolymerization of N-isopropylacylamide (NIPA) with a relatively new, cationic comonomer, N-3-dimethylaminopropylmethacrylamide (DMAPM) with higher ionization ability with respect to the commonly used cationic comonomers. To achieve particle sizes smaller than 1 microm, suitable for gene delivery, the total monomer concentration in the dispersion copolymerization was kept at a sufficiently low level. The size of poly(NIPA-co-DMAPM) particles was determined as 454 nm, by AFM in dry state. The poly(NIPA-co-DMAPM) particles showed both temperature and pH sensitivity in the aqueous media.The plasmid DNA adsorption onto the thermosensitive cationic particles was investigated at different temperatures and pHs. The adsorbed amount of plasmid DNA onto the particles was significantly increased by the introduction of cationic comonomer. The equilibrium plasmid DNA adsorptions up to 13 mg/g dry particles were achieved at physiological pH. Approximately 36% w/w of adsorbed plasmid could be desorbed from the cationic nanolatex. The results of biocompatibility studies performed with mouse fibroblast cells showed the suitability of thermosensitive cationic particles for intended application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号