首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目的获得耐热性和耐蚀性好,且可紫外光固化的有机硅/SiO2杂化涂层,研究甲基苯基二甲氧基硅烷(PDMS)含量对涂层性能的影响。方法以正硅酸乙酯(TEOS)为SiO2前驱物,PDMS与γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)为有机硅前驱物,采用溶胶-凝胶法制备PDMS含量不同的有机硅/SiO2杂化溶胶,经光固化后,得到有机硅/SiO2杂化涂层。对涂层进行机械性能测试,以及红外光谱分析、热重分析和电化学阻抗谱分析。结果前驱物均水解完毕并发生缩合反应,从而得到了有机硅/SiO2杂化涂层;随着PDMS含量的增加,杂化涂层的硬度降低,耐冲击性、柔韧性和附着力良好且变化不大。结论 PDMS的加入有利于提高涂层的综合性能,当n(TEOS)∶n(PDMS)∶n(KH-570)=15∶16∶7时,有机硅/SiO2杂化涂层的耐热和耐蚀性能达到最佳。  相似文献   

2.
将锐钛矿型纳米TiO2粉体分散于乙醇中后,按一定的固体组分含量加入到采用溶胶-凝胶法制备的有机硅/SiO2杂化溶胶中,制备出含不同量TiO2的有机硅/SiO2杂化溶胶,在100℃下烘干12 h得到含TiO2的有机硅/SiO2杂化涂层。红外光谱研究表明杂化材料中Ti原子已接枝到了杂化网络中。对杂化涂层性能测试表明:当TiO2质量分数为1%时涂层有较好的物理和耐蚀性能,并且具有良好的防霉效果。  相似文献   

3.
采用溶胶-共混法制备超支化聚氨酯(UV-HPU)/TiO2自清洁光固化杂化涂层,在低温下(<110℃)对涂层进行热处理.采用接触角方法研究不同TiO2溶胶添加量及热处理温度,对涂层光催化自清洁特性和基本性能的影响.结果表明:TiO2在涂料中的质量分数约为10%,热处理温度为110℃的涂层在紫外光照射后接触角可以达到3....  相似文献   

4.
用酸催化溶胶-凝胶法制得SiO2溶胶,与丙烯酸酯单体原位聚合,制备了含氟聚丙烯酸酯/SiO2杂化材料.通过红外光谱、场发射扫描电镜、X射线光电子能谱对杂化材料的结构、形态及表面化学组成进行了表征,表明SiO2在杂化体系中以Si-O网络的形式存在,并且与有机相之间有良好键合.并研究了SiO2相的形态、分布和界面状况对杂化材料的表面性能、热学性能和力学性能的影响.测试结果证实,随着SiO2含量的增加,杂化材料的疏水性、热稳定性和硬度都逐渐增强,附着力则是先增大后减小.  相似文献   

5.
有机硅/SiO2杂化涂层电化学阻抗研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二甲基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了有机硅/SiO2有机-无机杂化溶胶.在100℃下经12h烘干得到有机硅/SiO2杂化涂层,红外光谱研究表明:有机、无机两相组成了强相互作用的复合体系.采用电化学阻抗(EIS),研究了杂化溶胶制备的涂层在3.5%NaCl溶液中浸泡不同时间的阻抗行为.并根据阻抗谱特征建立了等效电路,结合等效电路图及拟合结果,分析了杂化涂层在3.5%NaCl溶液中浸泡不同时间的耐蚀性.研究结果表明:在3.5%NaCl溶液中,有机硅/SiO2杂化涂层具有良好的耐蚀性.  相似文献   

6.
采用正硅酸乙酯(TEOS)和PEG400为先驱体通过溶胶-凝胶法制备了磷钨酸(PWA)掺杂的SiO2/聚乙二醇(PEG)杂化质子交换膜,并采用FTIR、XRD、SEM对样品组成和结构进行了表征.研究表明质子传导率随PEG和PWA含量增加而增加,但是,PEG和PWA含量过多则不利子杂化材料的成型.综合考虑杂化膜的电导率和成膜性能,PEG30PWA20的组成最为理想,其室温质子电导率为6.125×10-5 S·cm-1.质子电导率随温度的变化规律未能符合Arrhenius方程,主要由于温度升高后杂化膜内水分子减少以及电极与交换膜的接触面阻抗增加造成.  相似文献   

7.
针对传统涂层封孔剂在酸性环境中的不足,为拓展等离子喷涂层在复杂腐蚀环境中的应用,以等离子喷涂Al2O3-13%TiO2陶瓷层为封孔对象,借助溶胶-凝胶法制备了一种新型KH-570/SiO2有机-无机杂化封孔剂,研究了KH-570含量对封孔涂层耐酸腐蚀性的影响。结果表明,KH-570/SiO2杂化封孔剂适用于等离子陶瓷涂层的封孔处理,可大幅提高封孔涂层的耐酸腐蚀性能;随KH-570含量的增加,涂层的耐腐蚀性呈先增加后降低的趋势;当封孔剂中TEOS与KH-570的体积比为4∶5时,封孔涂层表现出最佳的耐酸腐蚀性能,其腐蚀电位较未封孔涂层提高了61.6%,腐蚀电流仅为未封孔涂层的1/1767。  相似文献   

8.
以钛酸丁酯(TBT)为前驱物、盐酸为催化剂、异丙氧基三(焦磷酸二辛酯)钛(TTPO)为表面改性剂,采用溶胶-凝胶法制备TTPO改性的纳米TiO_2/有机硅杂化涂层,研究了TTPO的用量对TiO_2有机硅杂化涂层膜结构和相关性能的影响。采用红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、紫外吸收光谱(UV-vis)、铅笔硬度法和润湿性实验等分析手段对涂层进行了表征。结果表明:适量的TTPO可以明显提高纳米TiO_2与膜层的相容性,得到均匀平整、结构致密、硬度较高且疏水性增强的杂化涂层。然而,随着TTPO用量的增加,杂化涂层的膜结构出现孔洞,尽管疏水性有所增强,但涂层硬度也随之降低。当TTPO/TBT的摩尔比为1:0.01时,涂层具有较高的硬度和较强的疏水性。  相似文献   

9.
有机硅/二氧化硅杂化涂层抗原子氧侵蚀性能研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法,以一甲基三乙氧基硅烷(MTES)和正硅酸乙酯(TEOS)为原料,乙醇为溶剂,盐酸为催化剂,通过溶胶-凝胶法制备出分子级复合的SiO2杂化有机硅树脂,浸涂在聚酰亚胺表面干燥后获得了透明致密的涂层。采用自己研制的空间综合环境地面模拟设备对试样进行了原子氧暴露实验。测试表明,溶胶-凝胶制备的有机硅/SiO2涂层抗原子氧侵蚀性能优异,抗原子氧侵蚀性能比聚酰亚胺基体提高了2个数量级以上。经AO暴露后的杂化涂层质量几乎没有发生变化。经FTIR和XPS分析表明,在原子氧暴露后涂层表面产生的是SiO2陶瓷层。SEM分析表明无涂层的聚酰亚胺原子氧暴露后表面非常粗糙,表面呈现地毯状形貌而涂覆涂层试样暴露前后表面形貌没有发生变化。采用紫外-可见光-近红外分光光度计对涂覆有机硅/SiO2涂层试样分析表明,原子氧暴露前后试样表面的光学性能也未发生变化。实验证明,制备抗原子氧侵蚀的防护涂层的溶胶-凝胶法是一种行之有效的方法。  相似文献   

10.
DDS含量对有机硅/SiO_2杂化涂层性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了不同DDS含量的有机硅/SiO_2有机-无机杂化溶胶。在100℃下经12 h烘干得到有机硅/SiO_2杂化涂层。涂层性能测试表明:随DDS含量增加,硬度、附着力、耐蚀性(未加DDS耐蚀性较差)有所下降;柔韧性均为1级。低温下涂层耐热性较好。溶胶中n(TEOS):n(MTES):n(DDS)为6:9:2时涂层综合性能最佳。  相似文献   

11.
2A12 铝合金硬质阳 极氧化及膜层性能研究   总被引:3,自引:3,他引:3  
目的对混合酸电解液体系中2A12铝合金硬质阳极氧化膜层的制备及性能进行研究。方法采用以硫酸为主的混合酸电解液体系,对2A12铝合金进行硬质阳极氧化,研究混合酸电解液主要成分对2A12硬质阳极氧化膜层性能的作用和影响。结果在硫酸的溶解、有机酸吸附以及添加剂的耦合作用下,混和酸电解液避免了2A12铝合金硬质阳极氧化膜制备过程中存在的烧蚀现象,膜层平均硬度达到400HV0.05以上。WX添加剂能够明显改善2A12铝合金硬氧化膜层的耐蚀性能,经过168 h的中性盐雾试验,仅出现了5%的白霜,但与相同厚度的7A04铝合金硬质阳极氧化膜层相比,耐蚀性较差。结论建议制备有耐蚀性要求的硬质阳极氧化膜层时选用铜含量较低的铝合金材料。  相似文献   

12.
This study investigates the variations in nanomechanical properties of coatings made of a pristine polymeric backbone and those containing silicone segments. Four different coatings with varying degrees of inorganic segments were prepared and analyzed. The four coatings were 1) a pure epoxy polymer coating, 2) a hybrid coating consisting of epoxy and silicone, 3) a ceramer coating consisting of organo-silicone and 4) a quasi-ceramic coating consisting of specialty silicone composition. The molecular bonding characteristics of the coatings were characterized with FTIR spectroscopy. The coatings were also tested using nanoindentation and nanoscratch methods to investigate mechanical and tribological properties. The scratched surface was investigated using scanning electron microscopy and atomic force microscopy. The hybrid coating displayed superior nanomechanical properties compared to the pure polymer coating, and the coating containing high silicone levels displayed better hardness. Atomic force microscopy showed that the epoxy-based polymer coating consisted of a smooth surface that was compressed when scratched using a nanoindenter. The hybrid coating had rough surface that was damaged and partially recovered after the scratch test. The ceramer and quasi-ceramic coatings displayed brittle failure.  相似文献   

13.
马正峰  姬忠莹  王晓龙 《表面技术》2018,47(10):283-288
目的 制备光固化水性聚氨酯改性丙烯酸酯/二氧化硅(WPUA/SiO2)复合材料,提高水性光固化聚合物材料的涂膜性能。方法 制备含双键官能化的二氧化硅纳米粒子,将其引入到制备的可光固化聚氨酯改性丙烯酸酯乳液体系中,制备水性UV固化WPUA/SiO2复合乳液,研究复合材料制备方法,分析体系中官能化二氧化硅纳米粒子的分散稳定性及其对涂膜形貌、透光性、硬度等性能的影响。结果 由于WPUA和官能化二氧化硅纳米粒子均含有C==C,所制备的WPUA/SiO2复合材料可以用UV光进行固化,官能化二氧化硅纳米颗粒由于表面存在有机分子链,与水性聚氨酯改性丙烯酸酯相容性提高,使得二氧化硅纳米颗粒掺杂量达到10%(质量分数)时可存储稳定性达30天以上。固化后涂层的透光性和力学性能明显提升,涂层铅笔硬度达到3H,粘附性为1级,抗冲击强度大于50 kg?cm。结论 制备的WPUA/SiO2复合体系具有良好的稳定性,改性纳米粒子的掺杂对水性UV固化聚氨酯改性丙烯酸酯的力学性能有明显改善,且可提高复合涂层的透光性。  相似文献   

14.
目的提供一种在真空装饰领域能够广泛应用的具有防护、功能性的氧化硅涂层制备方法,为具体应用中涂层工艺参数的选择提供指导。方法采用PECVD技术,通过改变O2与HMDSO配比,低温制备具有不同微结构的氧化硅涂层。采用扫描电镜观察涂层的表截面微观形貌,采用X射线衍射仪、傅里叶变换红外光谱仪、X射线光电子能谱仪、激光共聚焦拉曼光谱仪分析涂层的微结构及成分,采用紫外分光光度计表征涂层透光性,采用纳米压痕仪表征涂层的力学性能,采用接触角仪表征涂层的表面润湿性。结果所制备的氧化硅涂层表面光滑,结构致密。随反应气体中O2配比的增加,涂层结构由Si O逐渐过渡为Si O2,并掺杂有少量非晶碳,其光学透过率增加,力学性能下降,亲水性增加。当碳含量最低时,涂层具有最优异的透光性及最好的亲水性,在全可见光波段范围内透过率接近100%,与水接触角为45.38°;当碳含量最高时,涂层具有最优异的力学性能,硬度为13.5 GPa,H/E为0.11。结论采用PECVD方法能够在低温下获得光学透明、具有一定硬度、表面易清洁的氧化硅涂层,通过气体控制能够对涂层微结构及性能进行调节,从而适用于不同需求的功能装饰。  相似文献   

15.
SiO2 对镁合金阴极电泳涂层耐磨性的影响   总被引:1,自引:0,他引:1  
朱阮利  张津  高帅  倪娜 《表面技术》2015,44(7):27-33
目的提高镁合金有机涂层的耐磨性能。方法用KH450硅烷改性Si O2粉体,并充分分散于电泳漆中。用KH460硅烷预处理镁合金表面,并阴极电泳复合涂层。通过铅笔硬度测试、摩擦磨损实验、画圈附着力测试、NMP(N甲基吡咯烷酮)试验和Machu试验,分别评价阴极电泳涂层的硬度、耐磨性能、附着力、抗NMP溶胀性能和耐蚀性,并通过扫描电子显微镜和光学显微镜对磨痕形貌进行分析。结果在镁合金用KH460预处理的前提下,添加Si O2粉体使涂层硬度由4H上升为5H,同时也提高了涂层的耐蚀性,并且涂层的附着力保持为1级,抗NMP溶胀性能仍120 h。在预处理镁合金基体上制得的原漆涂层和添加纳米Si O2的涂层耐磨性较好,磨痕深度与涂层厚度的比值分别为0.47和0.475,摩擦系数均低于0.4;在未预处理镁合金基体上制备的原漆涂层和在预处理镁合金基体上制备的添加微米Si O2的涂层耐磨性较差,磨痕深度与涂层厚度的比值分别为0.665和0.673,摩擦系数均大于0.7。四种涂层磨损破坏的机制主要为疲劳破坏。结论 Si O2粉体的加入可以有效提高涂层的耐蚀性和铅笔硬度,同时不降低涂层的附着力和抗NMP溶胀性能。用硅烷对镁合金进行预处理,向电泳漆中添加硅烷处理的纳米Si O2,可有效提高阴极电泳涂层的耐磨性。  相似文献   

16.
Plasma-assisted chemical vapour deposition (PACVD) siloxane coatings from a mixture of hexamethyldisiloxane (HMDSO) and O2, and hybrid coatings deposited by simultaneous sputtering of silicon and plasma polymerisation of HMDSO + O2 were prepared on glass and steel substrates. The effect of the addition of sputtered silicon was investigated for coatings with different HMDSO/O2 ratios. The microstructure and composition of coatings were affected by the coating parameters used. Silicon content was roughly the same for all coatings; carbon content decreased while oxygen content and surface energy increased with decreasing HMDSO/O2 ratio in hybrid coatings. Hardness and modulus were higher for hybrid coatings and increased with decreasing HMDSO/O2 ratio. Hybrid coatings showed much better scratch and wear resistance than PACVD coatings. All coatings showed good fouling-release performance with the freshwater bacterium Pseudomonas fluorescens.  相似文献   

17.
目的研究Al_2O_3添加量对Cr_2O_3/TiO_2/Al_2O_3/SiO_2四元复合陶瓷涂层性能的影响。方法采用等离子喷涂技术在油气管道X80管线钢基体表面制备出具有不同Al_2O_3含量的四元复合陶瓷涂层。另外,为探究基体温度对涂层性能的影响,所有涂层均在等离子喷枪预热及室温的两种基体上制备。所制涂层的气孔率、硬度、结合力及电化学腐蚀性能分别采用煮沸称重法、维氏硬度计、划痕仪、电化学工作站进行检测,并用X射线衍射仪(XRD)、扫描电镜(SEM)分析不同Al_2O_3含量涂层的物相组成和形貌特征,研究Al_2O_3含量对涂层各性能的影响。结果随着Al_2O_3含量的增加,Cr_2O_3/TiO_2/Al_2O_3/SiO_2四元复合陶瓷涂层的气孔率呈现先降低后增加的趋势,相对应的四元复合陶瓷涂层的结合力、维氏硬度则先增加后降低。当Al_2O_3质量分数为60%时,四元复合陶瓷涂层的性能最优,气孔率为3.6%,硬度为824.6HV,结合力为53.8N。电化学腐蚀测试表明,Al_2O_3能增强涂层的耐腐蚀性能,Al_2O_3质量分数为60%时,涂层自腐蚀电位最高,为-0.28 V。另外,在基体预热和不预热条件下,所制涂层性能随Al_2O_3含量的变化一致,但是基体预热比不预热更有利于涂层性能的提高。结论 Al_2O_3的添加不仅能够有效降低涂层Cr含量,还能显著提升四元复合陶瓷涂层的各项性能,特别是耐腐蚀性。此外,等离子喷涂前对基体进行预热,有利于涂层性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号