首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sea buckthorn berries from Hippophae rhamnoides, H. tibetana, and H. salicifolia were collected from the cold deserts of the Himalayas (Lahaul, Ladakh, and Spiti; India) and characterized in terms of the FA, carotenoid, tocopherol, and tocotrienol composition in their pulp oil. These varied from species to species. Total carotenoids ranged from 692 to 3420 mg/kg in pulp oils of fresh berries, and total tocols, from 666 to 1788 mg/kg. Hippophae salicifolia berries contained substantially lower amounts of pulp oil, with lower levels of carotenoids and tocopherols. There was little difference in the proportion of individual tocols in pulp among the three species. α-Tocopherol alone constituted 40–60% of total pulp tocols in berries. Pulp oils had palmitoleic acid (32–53%) as the most abundant FA followed by palmitic (25–35%), oleic (8–26%), linoleic (5–16%), and linolenic (0.6–2.6%) acids, with the highest deviation observed in the proportion of palmitoleic acid in these berries. Hippophae rhamnoides and H. tibetana contained the highest amount of the lipophilic carotenoids and tocols. Hippophae salicifolia berries had higher amounts of lipophobic constituents such as vitamin C and flavonols.  相似文献   

2.
Seeds from different collections of cultivatedSesamum indicum Linn and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum & Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil contents and fatty acid composition of the total lipids. The oils from wild seeds were characterized by higher percentages of unsaponifiables (4.9, 2.6 and 3.7%, respectively) compared toS. indicum (1.4–1.8%), mainly due to their high contents of lignans. Total sterols accounted forca. 40, 22, 20 and 16% of the unsaponifiables of the four species, respectively. The four species were different in the relative percentages of the three sterol fractions (the desmethyl, monomethyl and dimethyl sterols) and in the percentage composition of each fraction. Campesterol, stigmasterol, sitosterol and Δ5-avenasterol were the major desmethyl sterols, whereas obtusifoliol, gramisterol, cycloeucalenol and citrostandienol were the major monomethyl sterols, and α-amyrin, β-amyrin, cycloartenol and 24-methylene cycloartanol were the main dimethyl sterols in all species. Differences were also observed among the four species in sterol patterns of the free sterols compared to the sterol esters.Sesamum alatum contained less tocopherols (210–320 mg/kg oil), andS. radiatum andS. angustifolium contained more tocopherols (ca. 750 and 800 mg/kg oil, respectively) than didS. indicum (490–680 mg/kg oil). The four species were comparable in tocopherol composition, with γ-tocopherol representing 96–99% of the total tocopherols. The four species varied widely in the identity and levels of the different lignans. The percentages of these lignans in the oils ofS. indicum were sesamin (0.55%) and sesamolin (0.50%).Sesamum alatum showed 1.37% of 2-episesalatin and minor amounts of sesamin and sesamolin (0.01% each).Sesamum radiatum was rich in sesamin (2.40%) and contained minor amounts of sesamolin (0.02%), whereS. angustifolium was rich in sesangolin (3.15%) and also contained considerable amounts of sesamin (0.32%) and sesamolin (0.16%).  相似文献   

3.
The seeds of cultivated Hibiscus spp. were extracted with supercritical carbon dioxide, and the resulting extracts were analyzed to identify the major TG components as the corresponding FAME. The seed oils were composed predominantly of oleic and linoleic FA (69.6–83.4%) with lesser amounts of palmitic acid (14.8–27.0%). Minor amounts of C14, C18, and C20 saturated FA were also detected. The oil content of the seeds was determined to be between 11.8 and 22.1 wt% for hybrid varieties and between 8.9 and 29.5 wt% for the native species from which the hybrid varieties were developed. The protein content of the defatted seed meal averaged 20% for the hybrid varieties. The composition of the extracted hibiscus seed oils suggests potential edible applications.  相似文献   

4.
The present study targeted the whole-fruit oil yield and fatty acid composition from five of the most abundant Arecaceae species grown in Cuba. The oil yields (% dry weight), determined by the Soxhlet extraction technique with hexane, were 25.5, 5.3, 6.9, 5.4, and 6.4% for Roystonea regia, Colpothrinax wrightii, Sabal maritima, Sabal palmetto and Thrinax radiata, respectively. The free fatty acid (FFA) content varied from 2.7 to 6.8%. Fatty acid (FA) profiles of the oils indicated that lauric acid (13.7–44.4%), myristic acid (9.4–22.4%) and palmitic acid (9.2–17.1%) as major saturated FA; whereas oleic acid (9.6–42.7%) and linoleic acid (9.3–17.0%) as major unsaturated FA. R. regia fruit seemed the most promising among Arecaceae grown in Cuba because of its high oil yield and low oil FFA content.  相似文献   

5.
Niger seed samples were collected from different regions in Ethiopia for determination of oil content, and of fatty acid, tocopherol and sterol composition in the seed oil by gas-liquid chromatography and high-performance liquid chromatography methods. There was a large variation in oil content, ranging from 29 to 39%. More than 70% of the fatty acids was linoleic acid (18∶2) in all samples analyzed. The other predominant fatty acids were palmitic (16∶0), stearic (18∶0) and oleic (19∶1) at a range of 6 to 11% each. Total polar lipids recovered after preparative thin-layer chromatography comprised a small fraction of the total lipids. They had higher 16∶0 and lower 18∶2 contents than the triacylglycerols.α-Tocopherol was the predominant tocopherol in all samples, 94–96% of the total amounting to 630–800 μg/g oil. More than 40% of the total sterols wasβ-sitosterol,ca. 2000μg/g oil. The other major sterols were campesterol and stigmasterol, ranging from 11 to 14%. The Δ5- and Δ7-avenasterols were in the range of 4 to 7%. From the samples studied, no conclusion could be drawn regarding the influence of altitude or location on oil content, tocopherol and/or sterol contents. The results of the present study on niger seed oil are discussed in comparison with known data for common oils from Compositae,viz, safflower and sunflower.  相似文献   

6.
Four varieties (Zutano, Bacon, Fuerte, Lula) of avocado (Persea americana) have been investigated for their unsaponifiable matter (UM) in mature and immature fruits. The UM content in crude oil was always higher in immature fruits (15–40%vs. 4–9%). The UM was fractionated by high-performance liquid chromatography for the determination of total sterols and tocopherol. The sterol content in the oil was always higher in immature (1.1–6.2%) than in mature (0.8–2.0%) fruits. The tocopherol content differed with the varieties (10.2–25.0 mg/100 g UM), and the levels in the oil were higher in immature (20.1–45.6 mg/100 g oil) than in mature (5.7–10.3 mg/100 g oil) fruits.  相似文献   

7.
The content and composition of fatty acids, sterols, tocopherols, and γ-oryzanol in wild rice (Zizania palustris) grown in North America were compared with those in regular brown rice (Oryza sativa L.). The lipid content of wild rice ranged from 0.7 to 1.1%, compared with 2.7% in regular brown rice. The lipids of wild rice comprised mainly linoleic (35–37%) and linolenic (20–31%) acids. Other fatty acids included palmitic (14.1–18.4%), stearic (1.1–1.3%), and oleic (12.8–16.2%). Wild rice lipids contained very large amounts of sterols, ranging from 70 g/kg for a Saskatchewan sample to 145 g/kg for Minnesota Naturally Grown Lake and River Rice. The main sterols found in an unsaponified fraction were: campesterol (14–52%), β-sitosterol (19–33%), Δ5-avenasterol (5–12%), and cycloartenol (5–12%). Some of sterols, γ-oryzanols, were present as the phenolic acid esters; the amount ranged from 459 to 730 mg/kg in wild rice lipids. The largest amounts of tocopherols and tocotrienols, 3682 and 9378 mg/kg, were observed in North Western Ontario wild rice samples, whereas the lowest were 251 mg/kg in an Athabasca Alberta sample and 224 mg/kg in regular long-grain brown rice. The α isomer was the most abundant among tocopherols and tocotrienols. The results of this study showed that wild rice lipids contain large amounts of nutraceuticals with proven positive health effects.  相似文献   

8.
The positional distribution of fatty acids (FA) of triacylglycerols (TAG) and major phospholipids (PL) prepared from four cultivars of peas (Pisum sativum L.) were investigated as well as their tocopherol contents. The lipids extracted from these peas were separated by thin-layer chromatography (TLC) into seven fractions. The major lipid components were PL (52.2–61.3%) and TAG (31.2–40.3%), while the other components were also present in minor proportions (5.6–9.2%). γ-Tocopherol was present in the highest concentration, and α- and δ-tocopherols were very small amounts. The main PL components isolated from the four cultivars were phosphatidylcholine (42.3–49.2%), followed by phosphatidylinositol (23.3–25.2%) and then phosphatidylethanolamine (17.7–20.5%). Small but significant differences (P < 0.05) in FA distribution existed when different pea cultivars were determined. However, the principal characteristics of the FA distribution in the TAG and the three PL were evident among the four cultivars; unsaturated FA were predominantly located in the sn-2 position, and saturated FA primary occupied the sn-1 or sn-3 position in the oils of the peas. These results suggest that the regional distribution of tocopherols and fatty acids in peas is not dependent on the climatic conditions and the soil characteristics of the cultivation areas during the growing season.  相似文献   

9.
The sandalwood kernels of Santalum insulare (Santalaceae) collected in French Polynesia give seed oils containing significant amounts of ximenynic acid, E-11-octadecen-9-oic acid (64–86%). Fatty acid (FA) identifications were performed by gas chromatography/mass spectrometry (GC/MS) of FA methyl esters. Among the other main eight identified fatty acids, oleic acid was found at a 7–28% level. The content in stearolic acid, octadec-9-ynoic acid, was low (0.7–3.0%). An inverse relationship was demonstrated between ximenynic acid and oleic acid using 20 seed oils. Results obtained have been compared to other previously published data on species belonging to the Santalum genus, using multivariate statistical analysis. The relative FA S. insulare composition, rich in ximenynic acid is in the same order of those given for S. album or S. obtusifolium. The other compared species (S. acuminatum, S. lanceolatum, S. spicatum and S. murrayanum) are richer in oleic acid (40–59%) with some little differences in linolenic content.  相似文献   

10.
The lipid, FA, and sterol composition of the New Zealand green lipped mussel (NZGLM, Perna canaliculus) and of the Tasmanian blue mussel (TBM, Mytilus edulis) were compared using TLC-FID and GC-MS. The respective mussel species were obtained from three different sites in both New Zealand (NZ) and Tasmania. Lipid class distribution of both mussel species was characterized by a high proportion of phospholipid (PL, 57–79%) and TG (10–25%), FFA (7–12%), and sterols (ST, 12–18%). The NZGLM had higher proportions of TG, FFA, and ST (P<0.01), whereas the TBM had a higher proportion of PL (P<0.01). There were higher proportions of total PUFA, saturated FA, n−3 FA, and hydroxy and nonmethyleneinterrupted FA (P<0.05) in the TBM compared with the NZGLM. The major FA in the NZGLM were 16∶0 (15–17%), 20∶5n-3 (14–20%), and 22∶6n-3 (11–17%). The same FA dominated lipids in the TBM, although there were significantly higher proportions of 16∶0 (P=0.000) and 22∶6 n−3 (P=0.003) and lower proportions of 20∶5n-3 (P=0.0072) in the TBM. A novel PUFA, 28∶8n-3, was detected in both mussels with higher amounts in the TBM, which probably reflects a greater dietary contribution of dinoflagellates for this species. Cholesterol was the dominant sterol in both mussels. Other major sterols included brassicasterol, 22-methylcholesterol, trans-22-dehydrocholesterol, and desmosterol. There were significant differences (P<0.05) between the NZGLM and TBM for 12 of the 20 sterols measured. Six sterols showed significant site differences for the NZGLM, and 10 for the TBM. The differences in the FA and sterol composition between the two species may be due to the diet of the NZGLM being more diatom-derived and the diet of the TBM having a greater dinoflagellate component.  相似文献   

11.
Azcan N  Kara M  Demirci B  Başer KH 《Lipids》2004,39(5):487-489
Seed oils of Origanum onites L. from the Antalya and Mugla regions and O. vulgare L. from the Kirklareli region of Turkey were extracted with hexane in a Soxhlet apparatus. The oil yields were 14.1–20.0 and 18.5%, respectively. FA compositions of the seed oils were determined by GC and GC/MS. Twenty FA were identified in both O. onites and O. vulgare seeds. The major FA of both species were linolenic (56.3–57.0%; 61.8%), linoleic (21.5–21.7%; 18.8%), oleic (8.7–8.9%; 5.9%), palmitic (5.9–6.5%; 5.5%), stearic (2.1–2.4%; 2.1%), and (Z)-11-octadecenoic (0.6–0.8%; 0.5%), respectively.  相似文献   

12.
Interprovenance variation was examined in the composition of Moringa oleifera oilseeds from Pakistan. The hexane-extracted oil content of M. oleifera seeds harvested in the vicinity of the University of Agriculture, Faisalabad (Punjab, Pakistan), Bahauddin Zakariya University (Multan, Pakistan), and the University of Sindh, Jamshoro (Sindh, Pakistan), ranged from 33.23 to 40.90%. Protein, fiber, moisture, and ash contents were found to be 28.52–34.00, 6.52–7.50, 5.90–7.00, and 6.52–7.50%, respectively. The physical and chemical parameters of the extracted M. oleifera oils were as follows: iodine value, 67.20–71.00; refractive index (40°C), 1.4570–1.4637; density (24°C), 0.9012–0.9052 mg/mL; saponification value, 177.29–184.10; unsaponifiable matter, 0.60–0.83%; color (1-in. cell), 1.00–1.50 R+20.00–30.00Y; smoke point, 198–202°C; and acidity (% as oleic acid), 0.50–0.74. Tocopherols (α, γ, and δ) accounted for 114.50–140.42, 58.05–86.70, and 54.20–75.16 mg/kg, respectively, of the oils. The induction periods (Rancimat, 20 L/h, 120°C) of the crude oils were 9.64–10.66 h and were reduced to 8.29–9.10 h after degumming. Specific extinctions at 232 and 270 nm were 1.80–2.50 and 0.54–1.00, respectively. The major sterol fractions of the oils were campesterol (14.13–17.00%), stigmasterol (15.88–19.00%), β-sitosterol (45.30–53.20%), and ͤ5-avenasterol (8.84, 11.05%). The Moringa oils were found to contain high levels of oleic acid (up to 76.00%), followed by palmitic, stearic, behenic, and arachidic acids up to levels of 6.54, 6.00, 7.00, and 4.00%, respectively. Most of the parameters of M. oleifera oils indigenous to different agroclimatic regions of Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study, compared with those for different vegetable oils, showed M. oleifera to be a potentially valuable oilseed crop.  相似文献   

13.
Compositional changes of rice germ oils prepared at different roasting temperatures (160–180°C) and times (5–15 min) from rice germ were evaluated and compared with those of unroasted rice germ oil. The color development and phosphorus content of oils increased significantly as roasting temperature and time increased, whereas the FA compositions of rice germ oils did not change with roasting temperature and time. Four phospholipid classes, i.e., PE, PI, PA and PC, were identified. PE had the lowest stability under roasting conditions. There were no significant differences in γ-oryzanol levels of rice germ oils prepared at different roasting temperatures and times. Four tocopherol isomers (α−, β−, γ−, and δ-tocopherol) and three tocotrienol isomers (α−, γ−, and δ-tocotrienol) were identified, but no β-tocotrienol was detectable. The content of α− and γ−tocopherol in rice germ oil gradually increased as roasting temperature and time increased.  相似文献   

14.
The physicochemical characteristics and minor component contents of blended oils packed in pouches in relation to starting oils used for blending were studied over a period of 6 mon at two storage temperatures and humidity conditions: 27°C/65% RH and 40°C/30–40% RH. Color, PV, FFA value, β-carotene content, tocopherol content, and oryzanol content of the oils were monitored at regular intervals. The color, PV (0.6–20.7 meq O2/kg, FFA value (0.08–2.1%), tocopherol content (360–1700 ppm%), oryzanol content (460–2,000 mg%), and sesame oil antioxidants (400–2,000 mg%) were not changed in either the starting oils or their blends. Oils and oil blends containing a higher initial PV (18.9–20.7 meq O2/kg) showed a slight reduction in value at 40°C, whereas oils having lesser PV of 5–10 showed a slight increase during the storage period. Among the minor components studied, only β-carotene showed a reduction, 8.9–60.2% at 27°C and 48–71% at 40°C, for the different oil blends studied. The observed results indicated that the packed oil blends studied were stable under the conditions of the study, and the minor components, other than β-carotene, remained unaltered in the package even at the end of 6 mon of storage.  相似文献   

15.
The phytosterol, tocopherol, and tocotrienol profiles for mkukubuyo, Sterculia africana, manketti, Ricinodendron rautanenni, mokolwane, Hyphaene petersiana, morama, Tylosema esculentum, and moretologa-kgomo, Ximenia caffra, seed oils from Botswana have been determined. Normal-phase HPLC analysis of the unsaponifiable matter showed that among the selected oils, the most abundant tocopherol and tocotrienol were γ-tocopherol (2232.99 μg/g) and γ-tocotrienol (246.19 μg/g), detected in manketti and mkukubuyo, respectively. Mokolwane oil, however, contained the largest total tocotrienol (258.47 μg/g). Total tocol contents found in manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo oils were 2238.60, 262.40, 246.20, 199.10, and 128.0 μg/g, respectively. GC–MS determination of the relative percentage composition of phytosterols showed 4-desmethylsterols as the most abundant phytosterols in the oils, by occurring up to 90% in moretologa-kgomo, mkukubuyo, and manketti seed oils, with β-sitosterol being the most abundant. Mokolwane seed oil contained the largest percentage composition of 4,4-dimethylsterols (45.93%). Besides 4-desmethylsterols (75%), morama oil also contained significant amounts of 4,4-dimethylsterols and 4-monomethylsterols (15.72% total). GC–MS determination of the absolute amounts of 4-desmethylsterols, after SPE fractionation of the unsaponifiable matter, confirmed that β-sitosterol was the most abundant phytosterol in the test seed oils, with manketti seed oil being the richest source (1326.74 μg/g). The analysis showed total 4-desmethylsterols content as 1617.41, 1291.88, 861.47, 149.15, and 109.11 μg/g for manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo seed oils, respectively.  相似文献   

16.
Cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils were characterized for their fatty acid (FA) composition, tocopherol content, carotenoid profile, total phenolic content (TPC), oxidative stability index (OSI), color, physical properties, and radical-scavenging capacities against peroxyl (oxygen radical-scavenging capacity) and stable DPPH (diphenylpicrylhydrazyl) radicals. Parsley seed oil had the highest oleic acid content, 81 g/100 g total FA, and the lowest saturated fat among the tested oils. Roasted pumpkin seed oil contained the highest level of total carotenoids, zeaxanthin, β-carotene, cryptoxanthin, and lutein at 71 μmol/kg and 28.5, 6.0, 4.9, and 0.3 mg/kg oil, respectively. Onion seed oil exhibited the highest levels of α- and total tocopherols under the experimental conditions. One of the parsley seed oils exhibited the strongest DPPH scavenging capacity and the highest oxygen radical absorbance capacity (ORAC) value of 1098 μmol Trolox equiv/g oil. However, ORAC values of the tested seed oils were not necessarily correlated to their DPPH scavenging capacities under the experimental conditions. The highest TPC of 3.4 mg gallic acid equiv/g oil was detected in one of the onion seed oils. The OSI values were 13.3, 16.9–31.4, 47.8, and 61.7 h for the milk thistle, onion, mullein, and roasted pumpkin seed oils, respectively. These data suggest that these seed oils may serve as dietary sources of special FA, tocopherols, carotenoids, phenolic compounds, and natural antioxidants. An erratum to this article is available at .  相似文献   

17.
Increasing heat treatment given to canola seed prior to pressing resulted in press oils with progressively increasing contents of non-triglyceride components. Phosphorus and chlorophyll contents ranged from 13 ppm and 7 ppm, respectively, in cold press oil to 64 ppm and 68 ppm, respectively, in oil from heated seeds. Refining reduced the amount of these components to 19 ppm and 60 ppm, respectively, in degummed oil and to 4 ppm and 11 ppm, respectively, in bleached oil. Oil with the lowest amount of non-triglyceride material was obtained by cold pressing and/or bleaching. The major sterols wereβ-sitosterol (55%), campesterol (35%) and brassicasterol (10%), and the major tocopherols were y (60%), α (30%) and δ (10%). The content of sterols and tocopherols ranged from 620 to 773 mg/100 g and from 47 to 64 mg/100 g, respectively, in the press oils. The total content of sterols was reduced by 15% and a further 1% on degumming and bleaching, respectively. The total tocopherol content was reduced by 20% and 60% on degumming and on subsequent bleaching. Refining had no effect on the sterol isomer ratio, but there was a significant relative loss ofα-tocopherol on bleaching.  相似文献   

18.
The compositions of rice bran oils (RBO) and three commercial vegetable oils were investigated. For refined groundnut oil, refined sunflower oil, and refined safflower oil, color values were 1.5–2.0 Lovibond units, unsaponifiable matter contents were 0.15–1.40%, tocopherol contents were 30–60 mg%, and FFA levels were 0.05–0.10%, whereas refined RBO samples showed higher values of 7.6–15.5 Lovibond units for color, 2.5–3.2% for unsaponifiable matter, 48–70 mg% for tocopherols content, and 0.14–0.55% for FFA levels. Of the four oils, only RBO contained oryzanol, ranging from 0.14 to 1.39%. Highoryzanol RBO also showed higher FFA values compared with the other vegetable oils studied. The analyses of FA and glyceride compositions showed higher palmitic, oleic, and linoleic acid contents than reported values in some cases and higher partial glycerides content in RBO than the commonly used vegetable oils. Consequently, the TG level was 79.9–92% in RBO whereas it was >95% in the other oils studied. Thus, refined RBO showed higher FFA values, variable oryzanol contents, and higher partial acylglycerol contents than commercial vegetable oils having lower FFA values and higher TG levels. The higher oryzanol levels in RBO may contribute to the higher FFA values in this oil.  相似文献   

19.
Soybean embryonic axes were separated from other tissues, i.e., the cotyledons and seed coat. The molecular species and FA distribution of TAG isolated from total lipids in the embryonic axes were analyzed by a combination of argentation-TLC and GC, and were investigated in relation to their tocopherol distribution, which was determined by HPLC. The dominant components were γ-tocopherols, with much smaller amounts of α-, β-, and δ-tocopherols. A modified argentation-TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 16 different groups of TAG, based on both the degree of unsaturation and the total acyl-chain length of FA groups. With a few exceptions, the major TAG components were S2D (6.8–10.3%), SMD (6.9–11.2%), SD2 (7.2–9.8%), SMT (3.2–7.4%), SDT (11.5–19.5%), D3 (3.5–8.3%), MDT (4.5–7.7%), D2T (11.1–20.6%), and DT2 (8.2–15.7%) (where S denotes saturated FA, M denotes monoenes, D denotes dienes, and T denotes trienes). These results indicate that there were significant differences (P<0.05) not only in tocopherol distribution but also in the molecular species of TAG among the four cultivars. Therefore, these tissues should be made available as raw materials for soybean-germ oil or soy milk, based on the differences in the distributions of tocopherol homologs and the molecular species of TAG within the embryonic axes.  相似文献   

20.
Fatty acid (FA) compositions and molecular species of triacylglycerols (TAG) isolated from total lipids extracted from adzuki beans (Vigna angularis) were determined with a combination of AgNO3-TLC and GC, and were compared in relation to the content of endogenous antioxidants analyzed by HPLC. δ-Tocopherol was present in the highest concentration (53.7–89.3 mg/kg), and γ-tocopherol in small amounts (11.2–14.8 mg/kg). The main lipid components were phospholipids (72.2–73.4%) and TAG (20.6–21.9%), whilst other components were also present in minor proportions (0.1–3.4%). Eighteen different TAG molecular species were identified and quantified by successive applications of AgNO3-TLC and GC. The main components were SMD (4.6–5.0%), S2T (13.4–16.4%), SD2 (11.8–14.3%), SMT (7.3–8.3%), SDT (9.9–10.6%), D3 (6.9–7.9%), MT2 (5.2–6.3%), D2T (7.0–11.2%), DT2 (7.4–7.6%) and T3 (6.2–7.2%) (where S, M, D, and T denote a saturated FA, a monoene, a diene, and a triene, respectively). No marked difference (P > 0.05) in the molecular species composition could be observed among the five cultivars. The results could be useful to both consumers and producers for manufacturing traditional adzuki confectionaries in Japan and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号