首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
A constitutive model based on hyperelasticity is proposed to capture the resilient (elastic) behavior of granular materials. Resilient behavior is a widely accepted idealization of the response of unbound granular layers of pavements, following shakedown. The coupling property of the proposed model accounts for shear dilatancy and pressure-dependent behavior of the granular materials. The model is calibrated using triaxial resilient test data obtained from the literature. A statistical comparison is made between the predictions of the proposed model and a few of the prominent models of resilient response. The proposed coupled hyperelastic model yields a significantly better fit to the experimental data. It also offers a computational efficiency when implemented in a classical nonlinear finite elemental framework.  相似文献   

2.
This paper discusses the capabilities of two homogenization techniques to accurately represent the elastic behavior of granular materials considered as assemblies of randomly distributed particles. The stress-strain relationship for the assembly is determined by integrating the behavior of the interparticle contacts in all orientations, using two different homogenization methods, namely the kinematic method and the static method. The numerical predictions obtained by these two homogenization techniques are compared to results obtained during experimental studies on different granular materials. Relations between elastic constants of the assembly, interparticle properties, and fabric parameters are discussed, as well as the capabilities of the models to take into account inherent and stress-induced anisotropy for different stress conditions.  相似文献   

3.
This paper presents the development of an elastic model for partially saturated granular materials based on micromechanical factor consideration. A granular material is considered as an assembly of particles. The stress-strain relationship for an assembly can be determined by integrating the behavior at all interparticle contacts and by using a static hypothesis, which relates the average stress of the granular assembly to a mean field of particle contact forces. As for the nonsaturated state, capillary forces at grain contacts are added to the contact forces created by an external load. These are then calculated as a function of the degree of saturation, depending on the grain size distribution and on the void ratio of the granular assembly. Hypothesizing a Hertz-Mindlin law for the grain contacts leads to an elastic nonlinear behavior of the particulate material. The prediction of the stress-strain model is compared to experimental results obtained from several different granular materials in dry, partially saturated and fully saturated states. The numerical predictions demonstrate that the model is capable of taking into account the influence of key parameters, such as degree of saturation, void ratio, and mean stress.  相似文献   

4.
By representing the assembly by a simplified column model, a constitutive theory was recently developed for a two-dimensional assembly of rods. This theory, referred to as the sliding-rolling theory, is extended in this paper to represent the triaxial stress-strain behavior of granular materials. The sliding-rolling theory provides a dilatancy rule and an expression for the slope of the line of zero dilatancy in the stress space. These rules are then combined with triaxial observations to provide a microstructural interpretation of the critical state of granular materials. According to the theory, the slope of the critical state line in the stress space depends on the interparticle friction angle and the degree of contact normal anisotropy. To verify the basic ideas of the sliding-rolling theory, numerical experiments are conducted using the discrete-element method on three-dimensional assemblies of spheres.  相似文献   

5.
Rotation of particles in granular material is an important mechanism, which is responsible for the distinct feature of moment transfer within granular material. A couple-stress continuum is adopted to model such effect. The paper presents a mix-mode finite element formulation for the analysis of a couple stress continuum. A modified variational formulation is proposed to render unconditional convergence. The developed finite element method is validated by comparing the computed results with closed-form solutions. In order to verify whether the couple-stress continuum is appropriate for modeling granular media, finite element results for two different boundary value problems are performed and compared with that obtained from discrete analysis. Physical meaning of internal length, a new parameter of the material, is discussed. The suitability of the couple-stress continuum for modeling granular medium is evaluated.  相似文献   

6.
This paper presents a new incremental stress-strain model for fiber-reinforced polymer (FRP)-confined concrete. The model, able to accommodate concrete with a wide range of strength (25–110 MPa), is based on material properties, force equilibrium, and strain compatibility, and uses newly developed models for constantly confined concrete. An expression is proposed to calculate a FRP jacket rupture strain in columns. Beyond the initiation of rupture, gradual failure of a FRP jacket is modeled to account for the size effect on the FRP-confined concrete columns. This proposed constitutive model is unique in that it accommodates a wide range of concrete strength and uses an analytical rupture strain of a FRP jacket to predict the complete stress-strain curve. Small and large specimens tested by the authors and other researchers are used to validate the proposed model. Very good to excellent agreements have been achieved between the analytical and experimental responses.  相似文献   

7.
The contact force model consisting of a linear spring dashpot with a frictional glider has been widely adapted to simulate granular flows. Real contact mechanics between two solid bodies is very complicated. Extensive theoretical and experimental studies exist for binary contacts. Very little work has been reported that addresses the effect of contact mechanics on the bulk behavior of granular materials. We first briefly summarize the difference of binary contacts between a linear spring–dashpot model and the Hertzian nonlinear spring with two nonlinear dashpot models. We then compare the constitutive behaviors of a granular material using a linear and a nonlinear model. The stress- and strain-rate relation in simple shear flow and the resulting coordination number are calculated using the discrete element method. It is found that although at the grain level binary contact between two particles depends on whether a linear or a nonlinear model is used, the bulk behavior of granular materials is qualitatively similar with either model.  相似文献   

8.
A single unit anaerobic granular bed baffled reactor (GRABBR) is proposed as an alternative to a separately operated two-phase anaerobic digestion system. This overcomes the problems related to wastewater treatment at high loading rates which usually results in accumulation of intermediate acid products, and consequently inhibits methanogenesis. This study was carried out to evaluate the stability of a five compartment GRABBR system when treating synthetic glucose wastewater at various operational conditions. The reactor was started with volumetric organic loading rate (OLR) of 1 kg chemical oxygen demand (COD)/m3?day, equivalent to 120 h hydraulic retention time (HRT), and loading rates were gradually increased at suitable intervals to up to 20 kg COD/m3?day (6 h HRT). At steady state, the overall soluble COD (SCOD) removal was over 95% under all applied loading conditions. At lower loadings, the reactor operated as a completely mixed system, and most of the treatment was achieved in the first compartment. At higher loadings, the entire system transformed into different phases, acidogenesis being dominant near the influent point, whilst methanogenesis was the main activity in the compartments near the effluent point. Granule breaking and flotation was observed in the acidogenic zone, whilst the methanogenic zone retained its original granular form. High assimilation rate of influent nitrogen was observed in the first compartment with the formation of nongranular biomass, identified as Klebsiella pneumoniae. The success of GRABBR as a single unit two-phase anaerobic digestion system could save the cost of an extra unit traditionally employed to achieve similar goals in treatment of high strength wastewaters.  相似文献   

9.
Observations of Stresses and Strains in a Granular Material   总被引:1,自引:0,他引:1  
The use of glass ballotini as a granular material provides the opportunity to simultaneously study internal stress fields and internal fields of deformation as a sample is submitted to boundary perturbations. Digital image correlation makes use of the visible fabric of the material to deduce a field of displacements from one digital photographic image to the next. If the glass granules are immersed in a fluid having the same refractive index, then observation with polarized light exploits the photoelastic properties of the glass to reveal information about the stresses. Again, comparison of digital photographs enables changes in stress conditions from one image to the next to be discovered. Tests performed in a simple loading device which forces rotation of principal axes in parts of the granular mass are presented to demonstrate the unique potential of this dual experimental configuration.  相似文献   

10.
研究了一类关于浓度的三维稳态晶体生长控制方程.这类问题由于带有远场条件,无法按常规方法给出其解析解或数值解.在复数域内利用分离变量法,得到了这类方程的级数形式的解析解,而最后的解是实数形式.结果表明,固液界面前沿浓度是指数震荡衰减的.  相似文献   

11.
The mechanical performance of pavement systems depends on the stiffness of subsurface soil and aggregate materials. The moduli of base course, subbase, and subgrade soils included in pavement systems need to be characterized for their use in the new empirical-mechanistic design procedure (NCHRP 1-37A). Typically, the resilient modulus test is used in the design of base and subbase layers under repetitive loads. Unfortunately, resilient modulus tests are expensive and cannot be applied to materials that contain particles larger than 25 mm (for 125-mm diameter specimens) without scalping the large grains. This paper examines a new methodology for estimating resilient modulus based on the propagation of elastic waves. The method is based on using a mechanistic approach that relates the P-wave velocity-based modulus to the resilient modulus through corrections for stress, void ratio, strain, and Poisson’s ratio effects. Results of this study indicate that resilient moduli are approximately 30% of Young’s moduli based on seismic measurements. The technique is then applied to specimens with large-grain particles. Results show that the methodology can be applied to large-grained materials and their resilient modulus can be estimated with reasonable accuracy based on seismic techniques. An approach is proposed to apply the technique to field determinations of modulus.  相似文献   

12.
Standard displacement-based finite element formulations show a tendency to lock in the modeling of nearly incompressible materials. This overly stiff response often leads to an overestimation of the collapse load for the system. In this paper we present a stabilized mixed displacement-pressure finite element method that can effectively model the nearly incompressible materials in their elastic and inelastic range. The stabilized formulation is free of volumetric locking effects and allows equal low-order interpolation for both the displacement and the pressure fields. The formulation is integrated with a three-surface elastoplastic cap model for the simulation and analysis of granular materials. The good performance of the method is demonstrated via numerical examples of the hydrostatic compression test for concrete and the bearing capacity and limit load analyses of flexible footings.  相似文献   

13.
A testing methodology is presented that supports the development of a field design for in situ gaseous treatment of sediments with diluted hydrogen sulfide. This approach involves the collection of column breakthrough test results at various flow rates, allowing a relationship to be developed between pore velocity of the carrier gas and velocity of the hydrogen sulfide reaction front that permits sizing to the field scale. A regression fit of a set of laboratory column breakthrough test data collected in this study is utilized to illustrate the development of a field design based on a two-dimensional radial flow analytical model. Information regarding treatment time and hydrogen sulfide consumption characteristics associated with in situ gaseous treatment can then be obtained from this model and used as a basis for estimation of treatment schedule and costs. The regression relationship can also be utilized in numerical models in more complex geometries to support the field design of in situ gaseous treatment operations.  相似文献   

14.
以"分层分类管控进厂原料质量"为目标,创新、优化、完善了进厂原料质量管控模式,搭建了集中、统一的新管理平台,对进厂原料的招标、采购、试验验证、质量检测、验收等信息进行全过程的管理与监控,实现了分层分类管控其质量的全新管理模式,在稳定原料质量、降本增效中发挥着显著作用,执行原料质量追溯有效降低损失500多万元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号