首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toluene and naphthalene degrading (ND) bacteria, obtained from contaminated lake sediment, were used to degrade both monoaromatics and polycyclic aromatic hydrocarbons (PAHs) and the effects of cosubstrates and cocultures were examined. When toluene and naphthalene enrichments were used, the effect of the substrate interaction on their metabolism was found to be inhibitory and yet the cocultures were stimulatory, especially for toluene enrichment degradation of naphthalene (with toluene). Pseudomonas putida M2T14, a toluene degrading isolate, could efficiently degrade benzene and toluene but not naphthalene. Nonetheless, when toluene was present, this monoaromatic degrader became capable of degrading PAHs, among which the methyl substituted PAHs (mPAHs) were preferred to their corresponding unsubstituted PAHs (uPAHs). Pseudomonas azelaica ND isolate could degrade benzene, toluene, and all test PAHs. Although the uPAHs were preferred, the degradation rates of mPAHs were greatly increased via substrate interactions with naphthalene. The interaction modes of dual aromatic hydrocarbons (AHs) degraded by P. putida M2T14 and P. azelaica ND were cometabolism, synergism, no effect, inhibition, and antagonism. However, when a negative effect of biodegradation from the interaction of these AHs was found on one isolate, a positive effect would be found on the other. When benzene was present, it exhibited inhibitory effects on aromatic hydrocarbon biodegradation by M2T14 and ND isolates. A study of the biodegradation of the ternary mixture of benzene, toluene, and naphthalene by both isolates together illustrated that not only was inhibition relieved but that degradation of each compound was also greatly enhanced. Degradation by the toluene and the ND bacteria could be facilitated by complementary substrate interactions between monoaromatics and PAHs and by bacterial association. These model organisms may be very useful for the study of complex aromatic hydrocarbon degradation and for bioremediation purposes.  相似文献   

2.
An integrated electrochemical oxidation process that utilizes electrokinetics (EK) to deliver the oxidant (5–10% hydrogen peroxide, H2O2) and chelant [40 mM of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA)] or iron chelate (1.4 mM Fe-EDTA or Fe-DTPA) to oxidize polycyclic aromatic hydrocarbons (PAHs) in soils was investigated. Batch and bench-scale EK experiments were conducted using: (a) kaolin, a low permeability clayey soil, spiked with phenanthrene at 500 mg/kg, and (b) former manufactured gas plant (MGP) soil, a high buffering silty soil, contaminated by a variety of PAHs (1493 mg/kg). Batch experiments showed that chelant solutions dissolve native iron minerals to form soluble Fe-chelates that remain available even at higher pH conditions of soil for the Fenton-like oxidation of the PAHs. In EK experiments, a 5–10% H2O2 solution was delivered from the anode and a chelant solution or iron-chelate was delivered from the cathode. Preflushing of soil with 5% ethanol and ferrous sulfate (1.4 mM) prior to oxidant delivery was also investigated. An electric potential of 2 VDC/cm was applied in all tests to induce electroosmotic flow for 5–8 days for kaolin and 25 days for the MGP field soil. In the absence of any chelating agent, phenanthrene oxidation was catalyzed by native iron present in kaolin soil, and 49.8–82.3% of phenanthrene was oxidized by increasing H2O2 concentration from 5–10%. At 5% H2O2 concentration, phenanthrene oxidation was not increased by using 40 mM EDTA, 40 mM DTPA or 1.4 mM Fe-DTPA, but it increased to 70% using 1.4 mM Fe-EDTA. Maximum phenanthrene oxidation (90.5%) was observed by 5% ethanol preflushing and then treating with 5% H2O2 at the anode and 1.4 mM Fe-EDTA at the cathode. However, preflushing with 1.4 mM ferrous sulfate did not improve phenanthrene oxidation. The results with the MGP field soil indicated that delivery of 5% H2O2 alone resulted in oxidation of 39.8% of total PAHs (especially 2- and 3-ring PAHs). The use of EDTA and Fe-EDTA did not increase PAHs oxidation in this soil. Overall, the results reveal that an optimized in situ combined technology of EK and Fenton-like process has the potential to oxidize PAHs in low permeability and/or high buffering soils.  相似文献   

3.
A continuous flow flat sheet hybrid membrane aerated biofilm reactor (MABR) was used to treat a synthetic wastewater containing perchloroethylene (PCE); 1.25–2.5?g chemical oxygen demand (COD)/L of glucose was also added to the synthetic wastewater as a source of COD representative of a real wastewater. The reactor was able to biodegrade 70?mg?L?1 of PCE in 9?h without the accumulation of any intermediate compounds, resulting in a removal rate of 247?mmol of PCE?h?1?m?3 in a reactor with a specific membrane area of 4.048?m2?m?3. MABRs have never been used before for PCE degradation, and this rate is one of the highest volumetric PCE degradation rates reported in the literature. COD removal was also good and varied from 85 to 92%. Since very few volatile fatty acids accumulated in the system, most of the residual COD was attributed to soluble microbial products as reported by previous researchers. A mass balance on chloride during this study showed that only 72–81% of it could be accounted for. It is probable that some of the chlorinated ethenes were adsorbed onto the biofilm or that aerobic intermediates of low-chlorinated compounds such as trichloroethanol, dichloroacetyl, and chloroacetaldehyde were produced in the system. Nevertheless the chloride mass balance in this work compares well with the literature. Due to their high PCE and COD removal rates, hybrid MABRs have the potential to be used for a number of refractory organics which require combined anaerobic/aerobic biological treatment for degradation.  相似文献   

4.
The influence of supplemental acetate on in situ bioremediation for the removal of dissolved polycyclic aromatic hydrocarbons (PAHs) in groundwater was evaluated in laboratory sand columns. Sand columns, inoculated with a soil enrichment culture, were fed with dissolved PAHs (9 mg/L naphthalene, 0.8 mg/L phenanthrene, 0.09 mg/L pyrene), nutrients, and hydrogen peroxide to sustain aerobic microbial growth. Pore water PAH concentration profiles were obtained during the study. Determinations of viable biomass, carbohydrate, and PAH sorption capacity were obtained at the conclusion of the experimental runs. Pore water profiles indicated that PAH biodegradation capability became more quickly established after 45 days in sand columns amended with acetate versus the unamended control. The endpoint pore water PAH concentration profiles were similar for both acetate-amended and unamended columns. Higher biomass in acetate-amended columns increased the overall sorption capacity of the sand medium for PAHs by 24–47%. Supplemental acetate resulted in minimal biofouling of the sand medium as the final hydraulic conductivity of the acetate-amended treatments was 36–72% of the clean sand value.  相似文献   

5.
Assessing the bioavailability of a group of polycyclic aromatic hydrocarbons (PAHs) coexisting in a field-aged contaminated sediment was examined using mild extractions by isopropanol- and ethanol-water solutions at concentrations of 5–100%, using extraction durations from 1?h?to?7?days. At a given solvent concentration, an initial rapid phase of PAH desorption was generally observed during the first 12?h, followed by a subsequent slower phase of desorption. A similar biphasic desorption was evident with increases in solvent concentration. PAH removal by various mild extractions was compared with PAH biodegradation by indigenous microorganisms. The removal of individual PAHs using 1-day 70% ethanol extraction was closely correlated to corresponding PAH removal via biodegradation, suggesting the possibility of using alcohol-water solution to simultaneously predict the bioavailability of multiple PAHs in aged sediments to indigenous microorganisms.  相似文献   

6.
The efficiency of two similar gas-lift bioreactors, a biofilm reactor and a hybrid circulating floating bed reactor (CFBR), were studied and compared. In the biofilm CFBR the biomass grew preferably adhered on a plastic granular support, whereas in the hybrid CFBR both suspended biomass and biofilms were allowed to grow in the reactor. COD/NH4+ ratio (COD=chemical oxygen demand) was manipulated between 0.0 and 8.0?g/g, maintaining the ammonia influent concentration around 50?mg N–NH4+/L, the ammonia loading rate at 0.9?kg N–NH4+/m3?day and the hydraulic retention time at 1.36?h. At low COD/NH4+ ratio (0 and 0.5?g/g) both systems behaved similarly, achieving ammonia removal percentages higher than 95%. In the biofilm CFBR a reduction of the nitrification percentage from 95 to 20% was observed when a COD/N–NH4+ ratio up to 8?g/g was applied in the influent. However, at the same operational conditions, the nitrification process in the hybrid CFBR was slightly affected. In the hybrid-CFBR reactor heterotrophs growing in suspension consumed the COD source faster than those growing in biofilms as was monitored. The growth of heterotrophic microorganism in suspension had a beneficial effect for the nitrifying population growing in the biofilm of the hybrid CFBR. Nitrifying activity of the biofilm was not limited by the presence of heterotrophs consuming dissolved oxygen, displacing the nitrifying bacteria or creating mass transfer resistance as was observed in the biofilm CFBR.  相似文献   

7.
多环芳烃污染土壤的面积伴随着生物质燃料的广泛应用不断增加,污染程度亦随之增强,研究污染土壤高效修复方法已刻不容缓.生物修复相对于物理和化学修复具有费用低、效果好、不产生二次污染等优点.植物-微生物联合修复体系则是其中最为高效、最具市场潜力的修复技术.详细介绍了微生物修复与植物-微生物联合修复技术的机理及应用, 并展望了多环芳烃污染土壤生物修复的发展趋势.  相似文献   

8.
This study investigated the kinetics and emission factor for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) on the combustion of liquid crystal display components. In addition, chemical characteristics and structure of the liquid crystal sample were also investigated. The evaporation and gas diffusion of liquid crystals occur in the early stage of the combustion process (at <545?K). Continuously, the liquid crystal molecules may be oxidized to form CO2, CO, CH4, C2H6, and PAHs. The activation energy (18.9?Kcal/mol), preexponential constant (1013.9?L/min) and reaction order (3.1) of the combustion of liquid crystal display components were also determined. On the other hand, the analytic results indicated that the emission factor for 16 USEPA priority PAHs in particulate and gas phase is not determined (n.d.)-25.19 and n.d.-31.48?μg/g, respectively. The emission factor is approximately 390 and 1,520 times higher, respectively, than that of waste terephthalic acid and biological sludge combustion. Results of this work suggest that the combustion of liquid crystal display components should emphasize the air pollution control.  相似文献   

9.
Previous studies have shown that the dry deposition of semivolatile organic compounds to the Great Lakes can account for a significant fraction of their total inputs. However, there is no generally accepted method to directly measure dry deposition. In this study the particulate dry deposition of polycyclic aromatic hydrocarbons (PAHs) was measured using smooth surrogate surfaces during the winter of 1996–1997 in Chicago. Concurrently, ambient air samples were collected. Average particulate Σ13-PAH fluxes and ambient concentrations were 120±28?μg/m2?d and 30±16?ng/m3, respectively. The measured particulate dry deposition fluxes were similar to those measured in other urban areas. Overall dry deposition velocities of PAHs calculated using the dry deposition fluxes and ambient concentrations averaged 4.5±3.1?cm/s. This value is higher than values typically used to estimate PAH particulate deposition, however, it agrees well with values determined using similar techniques. The overall dry deposition velocity for individual PAHs generally decreased with increasing molecular weight. This finding is consistent with the previous experimental studies that have shown that a greater fraction of the higher molecular weight PAHs are associated with fine particles relative to the lower molecular weight compounds.  相似文献   

10.
Current activated sludge models consider that the removal of biodegradable organics by suspended growth includes: rapid enmeshment of the organic particles in the microbial floc, hydrolysis of the complex organic molecules into readily biodegradable organic substances, and oxidation of dissolved organic substances. All of the models assume that hydrolysis is the rate-limiting step, but none considers the role that the kinetics of biological flocculation and the sludge-settling characteristics may play in defining the activated sludge operating parameters. Several researchers have studied the kinetics of biological flocculation, and have analyzed its role on the removal of particulate chemical oxygen demand in suspended growth reactors. It has been demonstrated that a large proportion of the organic matter present in sewage can be removed by biological flocculation using short hydraulic retention times and subsequent settling. The first paper demonstrates that the one-dimensional limiting flux theory may be useful for coupling the sludge-settling properties with the aeration tank behavior, and the second paper presents experimental evidence that the proposed model is a reasonable first approximation that can be used for activated sludge system design and operation.  相似文献   

11.
Effects of Surfactant Addition on Dewatering of Alum Sludges   总被引:1,自引:0,他引:1  
In Taiwan, surfactants are frequently used in the flotation process to aid in solid/liquid separation. Their effect on the dewatering of alum sludge was investigated. Various amounts of cationic and anionic surfactants were added to sludge samples, and the dewatering characteristics of the sludge and the water content of sludge cakes were evaluated. Both surfactants improved the dewatering of the sludge by lowering the specific resistance to filtration, decreasing the bound water content, and increasing the dewatering rate of the sludge. Different combinations of anionic and cationic surfactants and polyelectrolytes were also experimented on to study the effect of surfactant addition on the dewatering characteristics of polyelectrolyte-conditioned sludge. Experimental results indicated that both cationic and anionic surfactants adversely affected the dewatering of the conditioned sludge. The addition of surfactant to the oppositely charged polyelectrolyte proved to be most detrimental to sludge dewatering due to the precipitation between surfactant and polyelectrolyte. The addition of cationic surfactant to the cationic polyelectrolyte-conditioned sludge had the least effect.  相似文献   

12.
The electrooxidation of polynuclear aromatic hydrocarbons (PAHs) in solution was investigated. Most of the PAHs compounds are toxic and hardly biodegradable, so that a chemical or physicochemical treatment is required. In this paper, we reported treatment of synthetic creosote oily effluent (COE) containing several PAHs by using Ti/IrO2 and Ti/SnO2 circular or cylindrical mesh anode electrodes. COE was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant (CAS). In addition to anode material, different operating parameters were investigated such as current density, reaction time, recycling flow rate, and oxygen injection flow rate. The first series of experiments carried out in the recirculating batch reactor showed that circular Ti/SnO2 electrode was found to be more effective in removing PAHs than circular or cylindrical Ti/IrO2 electrodes. Current density and retention time played important roles for PAHs degradation efficiency, whereas circulation flow rate and oxygen injection slightly influenced the removal efficiency. Finally, the best and simplest operating conditions (82–84% of PAHs removal) determined for PAHs degradation in COE were obtained at a current density of 15?mA/cm2 through 90 min of treatment with a recycling rate of 3.6 L/min but without O2 injection in the close loop. Likewise, in the recirculating batch tests, PAHs decomposition exhibited behaviors of the fist-order reaction with a rate coefficient (k) of 0.015?min?1. The energy consumption was 7.5?kWh/m3. The second series of experiment using successively batch and continuous treatment of COE shows that the percentage of PAHs degradation could be maintained above 80% up to 18 h of treatment, thereafter, removal efficiency decreased owing to the formation of organic substances on the electrodes surface.  相似文献   

13.
Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or extent of oil biodegradation were observed, regardless of whether these nutrients were provided continuously or intermittently. Nutrients were provided once every two weeks to intermittent-input microcosms and washed out within four to five days. In continuous-input microcosms, ammonium and nitrate were assimilated as quickly as they were provided during the first week, but both accumulated to greater than 10?mg?N/L thereafter. The sensitivity of the oil mineralization rate to nutrient input decreased rapidly as the extent of oil degradation increased, and after about two weeks the rate of oil-mineralization appeared to be independent of nutrient input. Therefore, there may be little value in maintaining a long-term supply of nutrients in contact with oil-contaminated sediments. The rates of microbial assimilation of ammonium and nitrate followed similar trends. Both compounds were assimilated more slowly as the extent of oil biodegradation increased, and the nitrate uptake rates approached zero after about two weeks. Ammonium assimilation continued at a low rate throughout the six-week experiment, but this did not appear to affect the rate of oil mineralization. Assimilation of ammonium resulted in a sharp decrease in the pH of the synthetic seawater that was pumped continuously through the microcosms, but nitrate had a much smaller effect on pH. The magnitude of the ammonium-associated pH change was never as large as was observed in previous studies involving oil biodegradation in batch reactors, however, and did not affect the oil-biodegradation rate.  相似文献   

14.
Artificial groundwater recharge for drinking water production involves infiltration of surface water through sandy soil and its capture into a groundwater aquifer. The transformation of aqueous organic matter is one of the central issues in this process. The purpose of this work was to assess the potential of indigenous microorganisms in the source water to contribute in the aqueous organic matter biodegradation. For this purpose, microorganisms were enriched from the source water in a fluidized-bed reactor (FBR) and used for kinetic studies on biodegradation of organic matter at ambient temperature range. Lake water (total organic carbon 5.8?mg?L?1) was continuously fed to the FBR containing porous carrier material to support biomass retention. In the inlet and outlet water there were on average 21±6 and 13±5×105?cells?mL?1, respectively. Biofilm accumulation (as volatile solids) reached 13.1?mg?g?1 dw carrier. In the continuous-flow mode and the batch tests, the highest oxygen consumption rate appeared in the summer, followed by the fall, spring, and winter. At low temperatures, the biodegradation of aqueous organic matter was relatively rapid initially for labile fractions followed by a slower phase for refractory fractions. The average temperature coefficient (Q10) in the system was 2.3 illustrating a strong temperature dependency of oxygen consumption. The isotopic analysis of dissolved inorganic carbon δ13CDIC analysis revealed 27 and 69% mineralizations of dissolved organic carbon at 23 and 6°C over 65 and 630 min, respectively. These results can be used to construct additional input parameters in modeling applications of artificial groundwater recharge process. The biological component especially, i.e., the biodegradation, is difficult to predict for on-site applications without experimental proof and thus the interpretation in this study will help formulate design predictions for the process.  相似文献   

15.
The objective of this study is to investigate the effect of organic cosolvents on the extractability of hydrophobic organic compounds (HOCs) from soils after defined aging periods following HOC contamination. Phenanthrene was used as the representative HOC. Two soils with organic matter contents 2.9 and 6.5%, respectively, were investigated. The soils were spiked with phenanthrene, then saturated in water or mixtures of water and methanol, and aged for up to 422 days. After freeze drying, the extent of phenanthrene release was measured using a mild extraction process. The results show that as aging period increases, phenanthrene removal from the soils becomes more difficult. The amount of easily extractable phenanthrene tended to increase when more methanol existed in the pore fluid during aging, but the difference largely diminished after about 400 days. At the early stage of aging, extraction of phenanthrene from the soil with lower organic matter content tended to be less difficult compared with that from the soil containing more organic matter. The opposite appeared to be true when the aging time was longer than 200 days. From the results, we propose that a shift in the predominant sequestration mechanisms occurred after a certain period of time, in which hydrophobic interactions between HOCs and organic matter gradually yield to physical trapping of the sorbate molecule in the meso- and micropores of the soil particles.  相似文献   

16.
The use of a single-unit, single-zone submerged attached growth bioreactor (SAGB) for the combined removal of carbonaceous organics and nitrogen from a municipal wastewater was demonstrated. A nitrification efficiency of 97% was achieved at a total organic loading of 3.47?kg?bCOD/m3?day. The total nitrogen loading varied from 0.2?to?0.3?kg?N/m3?day and resulted in effluent total nitrogen concentrations ranging from 4.2?to?8.5?mg/L. Concurrent denitrification was achieved at rates ranging from 0.077?to0.29?kg?N/m3?day. This single-unit SAGB, by providing dual treatment capacities, represents a cost-effective option that is particularly attractive for facilities with limited space and budget for system upgrade.  相似文献   

17.
The impacts of bromide concentration and natural organic matter (NOM) characteristics on the formation and speciation of disinfection by-products (DBPs) in chlorinated NOM fractions were investigated. A total of 20 bulk water NOM fractions with a wide range of specific ultraviolet (UV) absorbance (SUVA254) values were obtained from a source water employing XAD-8 or XAD-4 resin adsorption in completely mixed batch reactors. SUVA was not a good predictor of DBP [trihalomethanes (THMs), haloacetic acids (HAAs), and adsorbable organic halogens (AOX)] formation and speciation. The destruction in the UV254 absorbance from chlorination did not correlate with DBP formation at any bromide level. NOM moieties which do not absorb UV light at 254?nm significantly contributed to DBP formation. Mass balance calculations on halogens using THMs, HAAs, and AOX data indicated that significant amounts of DBPs (>54% of AOX) other than THMs and HAAs were formed in NOM fractions with 60–110?μg/L bromide concentration. The relative occurrence of such other halogenated by-products decreased with increasing bromide concentrations up to 500?μg/L level. NOM in the studied water was more susceptible to the formation of brominated THM species as opposed to brominated HAAs. At constant dissolved organic carbon concentration, chlorine dose and pH, increasing bromide concentrations in NOM fractions increased the total concentrations of DBPs and resulted in a shift toward the formation of brominated species. Further, increasing bromide concentrations increased the spectrum of detected species (i.e., occurrence of all nine HAAs) and provided a competitive advantage to THM and HAA precursors in NOM over precursors of other DBPs.  相似文献   

18.
Ethene (ETH) is often associated with vinyl chloride (VC) in contaminated groundwater, as it is formed along with vinyl chloride during reductive dechlorination of higher chloroethenes (e.g., perchloroethylene and trichloroethylene). In the present study the interaction between VC and ETH during their aerobic biodegradation by enrichment cultures was investigated. The cultures were able to use both compounds as growth substrates. In mixture experiments, the degradation rate of one substrate was affected by the presence of the other. A biokinetic model based on competitive inhibition described well the observed substrate interactions over a range of initial VC (0–144 μmol?L?1) and ETH (0–37.5 μmol?L?1) concentrations, using parameters estimated from single-substrate experiments. Notably, half-velocity coefficients could be used as competitive inhibition coefficients. This finding shows the importance of obtaining accurate measurements of half-velocity coefficients in order model competitive inhibition processes. Simulation results showed that when the initial ETH concentration was raised from 0 to 30 μmol?L?1, the apparent half-velocity coefficient for VC (KVCAPP) increased by nearly three times, from 12.9 to 35.4 μmol?L?1. This finding has strong environmental implications because a low half-velocity coefficient for VC is regarded as the major prerequisite for achieving efficient and complete VC degradation. Moreover, the effect of ETH on the efficiency of VC removal is strongly dependent on the KVC/KETH ratio, consequently determination of KETH for VC-degrading microbes is important when biodegradation (or bioaugmentation) is considered for clean up of VC-contaminated sites. Additional model simulations, using the ratio of KVC to KETH for previously characterized VC- and ETH-utilizing microorganisms (values ranged from 0.06 to 1.2) showed that their ability to degrade VC in the presence of ETH may differ significantly.  相似文献   

19.
Headspace solid-phase microextraction(HS-SPME) with sol-gel calix[6]arene-containing fiber followed by gas chromatography with a flame ionization detector was used to examine the composition and distribution of seven polycyclic aromatic hydrocarbons(PAHs) in water. The novel SPME fiber exhibited higher extraction efficiency to PAHs compared with poly(dimethylsiloxane) and other calixarene-containing fibers. Extraction/retention mechanism based on the interactions between calixarenes and PAHs was discussed. Owing to the good selectivity and high extraction capability of this calixarene fiber, low detection limits were obtained in a range of 0.34-6.50 ng/L and the relative standard deviation values were≤12.3% for all of the analytes. The linear ranges of the proposed method were five orders of magnitude for the tested compounds, with linear correlation coefficients(r) greater than 0.998. The method was applied to the determination of polycyclic aromatic hydrocarbons in nine water sources in Wuhan City, China. Standard addition method was selected for the quantification and the recovery values were in a satisfactory range. Total PAHs concentrations in the nine surface water samples were found to vary between undetectable and 8.840 μg/L with two-and three-ring PAHs predominating.  相似文献   

20.
The photochemical degradation of 2,4,6-trichlorophenol (2,4,6-TCP) has been studied in the presence of a nonionic surfactant. A faster decay of 2,4,6-TCP could be achieved by the addition of surfactant depending on the pH levels. By examining the TCP decay at different solution pH and surfactant concentrations, the variations in photodecay rates were dominated by the existence of surfactant micelles. In water or when surfactant dosage was below the critical micellar concentration, the photodecay of 2,4,6-TCP was found to be faster at high pH levels, mainly due to the higher absorption of TCP and additional hydrogen source (from surfactant monomer). On the contrary, in the presence of micelles, faster decay of 2,4,6-TCP was obtained at lower pH levels. This was possibly due to the domination of both photochemical homolysis and electron transfer processes in acidic condition, but the latter was inhibited at alkaline condition. In addition, the cage effect of surfactant micelles may possibly hinder the OH?-catalyzed photohydrolysis in the solution, so the TCP decay in micellar solution was reduced at high pH levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号