首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Rock filters used to treat effluents from waste stabilization ponds do not remove ammonia as they are anoxic. A pilot-scale aerated rock filter was investigated, in parallel with an unaerated control, over an 18-month period to determine whether aeration provided conditions within the rock filter for nitrification to occur. Facultative pond effluent containing ~ 10?mg NH4–N/L was applied to the filters at a hydraulic loading rate of 0.15?m3/m3?day during the first 8?months and at 0.3?m3/m3?day thereafter. The results show that the ammonia and nitrate concentrations in the effluent from the aerated filter were <3 and ~ 5?mg?N/L, respectively, whereas the ammonia concentration in the effluent from the control filter was ~ 7?mg?N/L. Fecal coliforms were reduced in the aerated filter to a geometric mean count of 65?per?100?mL; in contrast the effluent from the control filter contained 103–104 fecal coliforms per 100?mL. Aerated rock filters are thus a useful land-saving alternative to aerobic maturation ponds.  相似文献   

2.
BACKGROUND: Water chlorination has been one of the major disease prevention treatments of this century. While epidemiologic studies suggest an association between cancer in humans and consumption of chlorination byproducts in drinking water, these studies have not been adequate to draw definite conclusions about the carcinogenic potential of the individual byproducts. PURPOSE: The purpose of this study was to investigate the carcinogenic potential of chlorinated or chloraminated drinking water and of four organic trihalomethane byproducts of chlorination (chloroform, bromodichloromethane, chlorodibromomethane, and bromoform) in rats and mice. METHODS: Bromodichloromethane, chlorodibromomethane, bromoform, chlorine, or chloramine was administered to both sexes of F344/N rats and (C57BL/6 x C3H)F1 mice (hereafter called B6C3F1 mice). Chloroform was given to both sexes of Osborne-Mendel rats and B6C3F1 mice. Chlorine or chloramine was administered daily in the drinking water for 2 years at doses ranging from 0.05 to 0.3 mmol/kg per day. The trihalomethanes were administered by gavage in corn oil at doses ranging from 0.15 to 4.0 mmol/kg per day for 2 years, with the exception of chloroform, which was given for 78 weeks. RESULTS: The trihalomethanes were carcinogenic in the liver, kidney, and/or intestine of rodents. There was equivocal evidence for carcinogenicity in female rats that received chlorinated or chloraminated drinking water; this evidence was based on a marginal increase in the incidence of mononuclear cell leukemia. Rodents were generally exposed to lower doses of chlorine and chloramine than to the trihalomethanes, but the doses in these studies were the maximum that the animals would consume in the drinking water. The highest doses used in the chlorine and chloramine studies were equivalent to a daily gavage dose of bromodichloromethane that induced neoplasms of the large intestine in rats. In contrast to the results with the trihalomethanes, administration of chlorine or chloramine did not cause a clear carcinogenic response in rats or mice after long-term exposure. CONCLUSION: These results suggest that organic byproducts of chlorination are the chemicals of greatest concern in assessment of the carcinogenic potential of chlorinated drinking water.  相似文献   

3.
The efficiency of two similar gas-lift bioreactors, a biofilm reactor and a hybrid circulating floating bed reactor (CFBR), were studied and compared. In the biofilm CFBR the biomass grew preferably adhered on a plastic granular support, whereas in the hybrid CFBR both suspended biomass and biofilms were allowed to grow in the reactor. COD/NH4+ ratio (COD=chemical oxygen demand) was manipulated between 0.0 and 8.0?g/g, maintaining the ammonia influent concentration around 50?mg N–NH4+/L, the ammonia loading rate at 0.9?kg N–NH4+/m3?day and the hydraulic retention time at 1.36?h. At low COD/NH4+ ratio (0 and 0.5?g/g) both systems behaved similarly, achieving ammonia removal percentages higher than 95%. In the biofilm CFBR a reduction of the nitrification percentage from 95 to 20% was observed when a COD/N–NH4+ ratio up to 8?g/g was applied in the influent. However, at the same operational conditions, the nitrification process in the hybrid CFBR was slightly affected. In the hybrid-CFBR reactor heterotrophs growing in suspension consumed the COD source faster than those growing in biofilms as was monitored. The growth of heterotrophic microorganism in suspension had a beneficial effect for the nitrifying population growing in the biofilm of the hybrid CFBR. Nitrifying activity of the biofilm was not limited by the presence of heterotrophs consuming dissolved oxygen, displacing the nitrifying bacteria or creating mass transfer resistance as was observed in the biofilm CFBR.  相似文献   

4.
An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem.  相似文献   

5.
A two-stage membrane bioreactor (MBR) system was evaluated for the treatment of high strength pet food wastewater characterized by oil and grease, chemical oxygen demand (COD), biochemical oxygen demand (BOD)5, total suspended solids (TSS), total Kjeldahl nitrogen (TKN), NH4–N, and TP concentrations of 2,800, 25,000, 10,000, 4,500, 1,650, 1,300, and 370?mg/L, respectively, to meet stringent surface discharge criteria of BOD5, TSS, and NH4–N of <10?mg/L, and TP of <1?mg/L. Pretreatment of the dissolved air flotation effluent with FeCl3 at a dose of 3.5?g/L, corresponding to a Fe:P molar ratio of 1.3:1 affected TP, TSS, volatile suspended solids (VSS), COD, BOD5, and TKN reductions of 88, 72, 75, 11, 11, 36, and 17%, respectively. The two-stage MBR operating at a total hydraulic retention time of 5.3?days comprising 2.5?days in the first stage and 2.8?days in the second stage, and solids retention time of 25?days in the first stage consistently met the criteria despite wide variations in influent characteristics. Very high COD and BOD5 removal efficiencies of 97.2 and 99.8% were observed in the first stage, with an observed yield of 0.14?gVSS/gCOD. A modular approach for the quantification of simultaneous nitrification denitrification (SND) in the first-stage MBR was developed and verified experimentally. The model indicated that on average, 21% of the influent nitrogen was removed by SND and predicted nitrogen loss with an accuracy of 72%. Complete nitrification of the residual organic nitrogen and ammonia was achieved in the second-stage MBR.  相似文献   

6.
A 1-year study evaluated the performance of a full-scale aerated lagoon, located in a midwest community in the United States. The objective of this study was to evaluate the performance of the lagoon under varied temperature conditions. The main parameters for evaluation were 5-day biochemical oxygen demand, total suspended solids, and ammonia-N. In addition, phosphorus and bacteriological qualities of the effluent were investigated. In general, the facility met 5-day biochemical oxygen demand and suspended solids limits required by the National Pollutant Discharge Elimination System. The lagoon reduced the ammonia-N concentration efficiently during late spring, summer, and fall, with values ranging from 0.3 to 4.2 mg∕L. In the winter period the activities of the nitrifying bacteria diminished, resulting in a reduced nitrification rate. The ammonia-N during winter ranged from 8.8 to 23 mg∕L. During the spring months (March to May) the nitrification rate slowly increased with the rise in temperature. This reflects the time period and environment necessary to reach an effective nitrification population in the system. The adjustment period was reversed in the fall months with a declining population of nitrifiers and decreased nitrification rates. The effluent total phosphate levels ranged from 0.6 to 4.9 mg∕L. Effluent fecal coliform values ranged from 10 to 1,110∕100 mL.  相似文献   

7.
The trickling filter solids contact water pollution control facility for the city of Ames, Iowa has successfully nitrified wastewater with trickling filters for the past decade. Both first stage, carbonaceous biochemical oxygen demand removing trickling filters (TFs) and second stage, nitrifying TFs (NTFs) remove significant quantities of ammonia from the wastewater. Based on operating data from January 1999 through December 2001, the average specific ammonia removal rate for the TFs was 1.5×10?4?kg?N/(d?m2). Most probable number testing confirmed the presence of nitrifiers in the top media layer of both stages of trickling filters. An experiment was performed whereby flows to the TFs and NTFs were varied to test ammonia removal capabilities of the facility. During the experiment, the TFs removed an average of 2.4×10?4?kg?N/(d?m2) and the NTFs removed an average of 1.5×10?5?kg?N/(d?m2) due to low loading. Data collected during the study varied with operating conditions. It was compared to and used to calibrate NTF models. An empirical design model poorly fit the data, and a theoretically based model could not be calibrated well with apparent ammonia removal rates. A best-fit equation, dependent on hydraulic loading and influent ammonia concentration (adjusted for recirculation), was regressed directly to the data and is useful for describing nitrification in the Ames WPCF TFs.  相似文献   

8.
Nitrification and granular activated carbon (GAC) filtration impact leaching of lead/copper to potable water under typical home plumbing configurations. GAC filters removed the disinfectant and caused rapid establishment of nitrification in chloraminated systems. The potential adverse consequences of whole house GAC filters deserve increased scrutiny in chloraminated systems. The lower pH values from nitrification and other microbes during overnight stagnation in pipes can markedly increase (up to 800%) lead and copper contamination of water.  相似文献   

9.
In order to understand the redox chemistry of chromium at low concentrations (100?μg/L) under conditions typically found in drinking water systems, three reductants and four oxidants were tested in three different waters at pH 5, 7, and 9. In the absence of any oxidant or reductant, Cr(VI) was stable at all three pHs, while Cr(III) precipitated out of solution at pH 9 and greatly impacted the reduction reactions. Stannous chloride was more effective than sodium sulfite or sodium sulfide for reducing Cr(VI) to Cr(III). Sulfide is not likely to be used as a reductant due to the long reaction time (120?h) to achieve the same reduction as SnCl2, while sulfite may be effective at higher doses. The oxidation of Cr(III) by dissolved oxygen and chloramine was very slow, while Cl2 and KMnO4 were effective oxidants under many conditions. A Cl2 residual in a drinking water distribution system may oxidize any soluble Cr(III) to Cr(VI) because of the long contact time, so Cr treatment strategies will need to remove both Cr(III) and Cr(VI).  相似文献   

10.
The effect of chlorine dioxide (ClO2) pretreatment on subsequent treatment processes (coagulation, flocculation, sedimentation, filtration, and ozonation) was studied at pilot-scale at the Upper San Leandro Water Treatment Plant near Oakland, Calif. Potential impacts of ClO2 on the distribution system were also studied at bench scale using simulated distribution system (SDS) tests. Pilot trials were conducted with one train operating without ClO2 pretreatment (Train 1) and the other with a ClO2 dose of between 0.6 and 1.0?mg/L (Train 2). Comparison between Trains 1 and 2 showed that ClO2 pretreatment resulted in a 0.1–0.2 NTU decrease in settled water turbidity when compared to no pretreatment. ClO2 pretreatment also resulted in a small (0.01?cm?1) decrease in ultraviolet absorbance at 254?nm. Following sedimentation, about 60% of the applied ClO2 formed chlorite (ClO2?), with 10–20% forming chlorate (ClO3?). Ozonation immediately converted all residual ClO2 and ClO2? to ClO3?. There was no significant difference in the performance of the filters between the two trains in terms of headloss, particle count, and turbidity. Bench-scale SDS tests indicated that chlorine dioxide preoxidation did not affect subsequent chloramine stability or concentrations of trihalomethanes, haloacetic acids, or adsorbable organic halides in the distribution system.  相似文献   

11.
Drinking water utilities may be required to change disinfectant to improve water quality and meet more stringent disinfection regulations. This research was conducted to assess and compares chlorine dioxide to free chlorine and chloramines on bacterial water quality monitored within model distribution systems (i.e., annular reactors). Following colonization with nondisinfected water, annular reactors containing either polycarbonate or cast iron coupons were treated with free chlorine, chlorine dioxide or chloramines. Two disinfectant doses (low/high) were tested for each disinfectant. Under specific environmental conditions, bacterial inactivation varied as a function of the disinfectant type and dose, sample type (bulk water versus biofilm bacteria) and coupon material. The ranking by efficiency was as follows: chlorine dioxide > chlorine > chloramines. On preformed biofilms of 106–107?cfu/cm2, the continuous application of a disinfectant led to a log removal of heterotrophic bacteria concentrations for suspended and biofilm bacteria ranging from 1.1 to 4.0, and from 0.2 to 2.5, respectively. Doubling the amount of disinfectant doses led to an additional log inactivation of 1–2.5 of heterotrophic bacteria levels. This study demonstrates that bacterial inactivation in distribution systems is governed by various inter-related parameters. The data indicate that chlorine dioxide represents a viable alternative for secondary disinfection in distribution systems.  相似文献   

12.
The presence of toxic hexavalent chromium poses a great challenge in biological wastewater treatment. In this study, the performance of a membrane bioreactor (MBR) for the treatment of synthetic domestic wastewater in the presence of chromium was investigated. The carbonaceous pollutant removal is not affected by Cr(VI) with concentration ranging from 0.4 to 10 mg/L; it becomes slightly lower when the Cr(VI) is 50 mg/L. The nitrification efficiency of above 99% can be achieved when the waste stream is free of the metal or contains 0.4 mg/L chromium. When its concentration is 10 mg/L, nitrification efficiency above 50% is found; however, it becomes deteriorated in the presence of 50 mg/L chromium. The positive biomass growth, though lower than conventional activated sludge process, can be achieved at Cr(VI) concentration less than 10 mg/L; a decline in the cell growth occurs when the metal concentration is increased to 50 mg/L. Significant accumulation for the metal is observed when its concentration is 0.4 mg/L; however, almost no metal removal is observed when the concentration is above 10 mg/L. During eight-month continuous operation, the presence of Cr(VI) has an insignificant effect on the flux. The nitrifiers in the MBR are more sensitive to the presence of Cr(VI) than heterotrophs.  相似文献   

13.
In water distribution systems containing PVC pipe manufactured in the “early era” (prior to 1977), vinyl chloride can leach into drinking water resulting in vinyl chloride concentrations exceeding the 2 μg?L?1 maximum contaminant level. Field testing of dead-end segments of water distribution systems consisting of early-era PVC pipe was conducted to examine their initial intrapipe vinyl chloride monomer (VCM) concentrations based on a Fickian-diffusion-based leaching model. The experiments showed a wide range of VCM concentrations within early-era PVC pipe ranging from less than 50 to more than 600 mg?kg?1. Based on the diffusion modeling approach, a protocol was designed that provides a means for utility managers to calibrate the model for specific dead-end lines. The paper delineates procedures to determine which dead ends require flushing to control vinyl chloride, examines the effects of system parameters such as temperature on vinyl chloride leaching, and provides a method to devise flush schedules and volumes. Through a properly designed, tested, and maintained flush protocol such as that developed in this research, public water systems with dead-end lines consisting of early-era PVC pipe can control vinyl chloride concentrations using either manual or automatic flush valves.  相似文献   

14.
While constructed treatment wetlands are very efficient at polishing nitrate from secondary effluent, they are much less effective at removing ammonia. A key factor that limits ammonia oxidation via biological nitrification in vegetated wetlands is low levels of dissolved oxygen. This study evaluated the effectiveness of side-stream oxygenation to enhance ammonia removal in replicate surface-flow experimental mesocosms containing wetland sediment and plants (Typha spp.). Mesocosms had a water volume of 29.5 L, a hydraulic retention time of 5 days, and a hydraulic loading rate of 4.3 cm/d, and were loaded with synthetic secondary effluent contain 10 mg-N/L of ammonia. Relative to nonoxygenated controls, oxygenation increased ammonia removal rates by an order of magnitude. Areal removal rates increased from 40?mg-N/m2/d to 450?mg-N/m2/d, concentration removal efficiency increased from 10 to 95%, and area-based first-order removal rates increased from <2?m/year to 50–75 m/year. Ammonia removal rates in oxygenated mesocosms were 2- to 4-fold higher than rates reported for full-scale constructed wetlands treating secondary effluent. Results show that oxygen-activated nitrification wetlands, a hybrid of conventional oxygenation technology and wetland ecotechnology, hold promise in economically enhancing rates of ammonia removal and shrinking the wetland area needed to polish ammonia-dominated secondary effluent. Further study is needed to confirm that oxygenation can promote high rates of ammonia removal at the field scale.  相似文献   

15.
Nitrifying Biomass Acclimation to High Ammonia Concentration   总被引:1,自引:0,他引:1  
Selection, acclimation, and kinetic characterization of a nitrifying microflora chosen from natural sources and capable of degrading total ammonia nitrogen (TAN) at high concentration was performed. The inocula of animal manure and of marine sediments were selected due to their nitrate production (55.8 mg N/L?day) and tolerance to salinity (16 g Cl?/L). An acclimation continuous culture was made using TAN up to 1,000 mg N/L and nitrogen load rate of 250 to 1,000 mg N/L?day. The TAN degradation rate after acclimation reached 0.16 mg N/mg VSS?h (VSS=volatile suspended solids) at a feed concentration of 1,000 mg N/L; the ammonia-oxidizing population increased from 60 to 77% whereas nitrite-oxidizing bacteria decreased from 40 to 23%. The following substrate-inhibition Haldane parameters were determined: rTAN,max = 0.21 and 0.19 mg N/mg VSS?h; Ks = 3.0 and 4.8 mg NH3-N/L; Ki = 22.4 and 35.6 mg NH3-N/L for sludge before and after acclimation, respectively. Differences between rTAN,max values were not statistically significant with a confidence limit of 95%, whereas Ks and Ki differences were significant, showing a better tolerance to higher ammonium concentrations.  相似文献   

16.
The objective of this study is to analyze health effects of arsenic pollution of drinking water using a geographical information system (GIS). The paper reports the regional impact of arsenic contamination in six administrative blocks of the central part of the Murshidabad district, West Bengal, India. In this area about 1,248,580 people are exposed to arsenic pollution out of whom 388,316 people are exposed to arsenic concentrations above 0.05?mg/L, the WHO maximum permissible level of arsenic in drinking water. The study estimates that 65% of the total area of the six blocks has arsenic concentrations below 0.05?mg/L, 26.12% of the area has arsenic concentrations above 0.05?mg/L, and for the rest of the area no arsenic distribution data available. The total number of expected death cases has been estimated considering the percent of risk involved in a concentration range and corresponding total population using such water for drinking purpose. The analysis forecasts that 11,890 people may risk death due to arsenic pollution in the whole life span. The maximum number of death cases is expected in Domkal and Beldanga 1 blocks and the minimum number of death cases is expected in Block Bhagabangola 2. This study also reports a comparison between the theoretical expectation of death cases and actual reported arsenicosis cases for the Domkal block. The areas of theoretical expectation and the areas of actually reported cases match fairly well except in a few cases. The present study helps planning and implementing of priority-based arsenic mitigation options.  相似文献   

17.
Arsenic (As) in drinking water was removed by a combined co-precipitation, active filtration process. A serpentine prereactor for ferric chloride (FeCl3) reagent mixing was combined with a moving bed active filter, followed by separation of waste residuals from clean water discharge. Waste effluent, using 10% of influent for transport, was retained in a clarifier for settling prior to water recycling. Process residuals passed leach tests for landfill disposal. The pilot-scale apparatus was tested at a small community, public drinking water system in Fruitland, Id. In a 49?hour test, influent groundwater averaging 40.2±1.0?μg/L total As (n = 17) was fed at 38?L/min?(10?gpm) and FeCl3 solution was added at an optimized Fe to As molar ratio of 133:1. Arsenic concentrations were reduced to 3.3±1.4?μg/L(n = 49) over the test period. Research observations support the hypothesis that the formation and renewal of iron oxide-coated sand in the active filter is a viable mechanism for high efficiency As removal. Further testing is underway to optimize long-term operating performance and to characterize the chemical processes of the system.  相似文献   

18.
Intermittent sand filtration is a common and effective method for treating septic tank effluent. However, if the loading rate is too high, clogging and ponding of the sand filter surface layer can occur due to the accumulation of excessive biomass and the deposition of suspended solids. This ponding limits the practicality of sand filtration as it makes it necessary to take the filter out of service for maintenance. The objective of this study was to develop and test, on-site, a new hybrid filter system that would reduce the risk of clogging at an organic loading rate substantially greater than the maximum recommended loading rate for intermittent sand filters. The system comprised a 0.6?m deep horizontal flow biofilm reactor (HFBR) over a 0.85?m deep stratified sand filter. The HFBR consisted of a stack of 20 horizontal corrugated polyvinyl chloride sheets, at 32?mm vertical spacings. The sheets were arranged so that the wastewater flowed over and back along alternate sheets down through the stack. The main biofilm growth formed on these sheets. The hybrid filter was loaded with septic tank effluent from an office/garage complex at the rate of 206?L/m2?day for a period of 400 days in two phases. During the first phase, the effluent volume of 600?L/day was applied in 24 doses/day for 10?min/dose, and during the second phase in 6 doses/day for 40?min/dose. Biofilms in the HFBR substantially reduced the organic and suspended solids loads that reached the sand filter surface and allowed an average total biochemical oxygen demand (BODT) loading rate, based on HFBR plan area, of 37?g?BODT/m2?day to be applied to the system without clogging. This rate was substantially greater than the maximum recommended loading rate of 24?g?BODT/m2?day for intermittent sand filters. During both loading phases a BODT removal of 94% was achieved and nitrification was nearly complete. The average effluent BODT was 12±4?mg/L during both phases. The hybrid filter system appeared to perform better in terms of suspended solids handling and nitrification during the more frequent dosing phase. The hybrid filtration system offers a more compact alternative to intermittent sand filtration on its own with little risk of clogging.  相似文献   

19.
The first full-scale nitritation and anaerobic ammonium oxidation (Anammox) processes for an inorganic wastewater of semiconductor factory were installed and performances were evaluated. Existing facilities of conventional nitrification and denitrification were retrofitted to a combination of the nitritation and Anammox process. Novel nitritation method, selective acceleration of ammonia oxidation by high concentration of inorganic carbon, was evaluated in full-scale aeration tank with carrier material. The ammonia conversion rate of the nitritation reactor was in the range of 0.27–0.48?kg?NO2-N/m3?day after start-up period, and stable nitritation was achieved for over 10 months. In an Anammox reactor, on-site cultivation of anammox bacteria was performed, and the most plausible reason for slower nitrogen conversion at the beginning was oxygen contamination into the reactor. After minimizing influence of oxygen contamination, design loading was achieved within 3 months of operation. After start-up period, stable Anammox reactions are maintained for over 10 months. The nitrogen removal rate after start-up period was in the range of 1.04–3.29?kg?N/m3?day. In combination with conventional denitrification process, soluble nitrogen in the final effluent was reduced below 8 mg/L.  相似文献   

20.
Heavy metal cadmium(II) was added stepwise into an A2O pilot plant to investigate the toxic effects of Cd(II) on the removal efficiencies, kinetic parameters (yield coefficients and maximum specific growth rates) and reaction rates of carbon, nitrogen and phosphate for the acclimatized heterotrophic and autotrophic bacteria. Results showed that 2?mg/L Cd(II) initially affected the biological reaction of phosphate removal. At Cd(II) 5?mg/L, the efficiencies of total nitrogen removal and nitrification were substantially dropped. At the same time, the yield coefficient and maximum specific growth rate of heterotrophs were significantly decreased from 0.8?g?COD/g?COD and 6.44?day?1 to 0.54?g?COD/g?COD and 4.67?day?1, respectively. And, the denitrification rate was inhibited by about 61%. The inhibition percentages of anaerobic release, anoxic and aerobic uptake rates of phosphate were about 76, 64, and 90%, respectively. When Cd(II) concentration was continually increased up to 35?mg/L, removal efficiency of chemical oxygen demand (COD) was significantly dropped. However, there was no obvious inhibition on the biological reactions of anaerobic ammonification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号