首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A robust eutrophication and sediment diagenesis model has been developed for the Patuxent Estuary to study the impact of different nutrient loadings on phytoplankton biomass and dissolved oxygen (DO) levels. The modeling approach was to begin with an existing water quality model (CE-QUAL-W2) for the Patuxent Estuary (hereafter referred to as the Estuary). First, formulations for the water column kinetics were completely replaced with routines based on the WASP/EUTRO5 water quality model. Then, a sediment diagenesis component was added to simulate the accumulation and mineralization of organic matter in the sediment, the generation of sediment oxygen demand, and the flux of phosphate and ammonia from the sediment. Loadings from the tributaries for nutrients and flow were based on a combination of watershed modeling and sampling by scientists at the Smithsonian Environmental Research Center. The new model was able to reproduce the ambient water quality data from 1997 to 1999 by adequately simulating the high concentrations of phytoplankton and low DO levels in the Estuary. The model was then used to evaluate the response to various hypothetical nutrient loading scenarios. Model results show that phytoplankton growth in the upper Estuary is much more sensitive to nutrient loading from tributaries than in the lower estuary. Further, model results indicate that DO concentrations in the lower Estuary are largely influenced by levels of nutrients and organic carbon at the mouth of the Estuary.  相似文献   

2.
A water quality and ecosystem model is developed to simulate nutrients, heavy metals, and aquatic plants in the Erh-Chung Flood Way wetland in Taiwan. A sediment system was incorporated into the model. The RMA2 and WASP/EUTRO5 models were adopted as the basic framework with modifications and enhancement of kinetics to incorporate ecosystem dynamics and sediment-water interactions. Hydrodynamic results from the RMA2 model were used to quantify mass transport for the EUTRO5 model. The major effort in this study was adding four water quality variables; macrophyte biomass, suspended solids, heavy metals in macrophytes, and heavy metals in the water column and sediment were incorporated into EUTRO5 to form the water quality and ecosystem model. Site-specific water quality data were collected to support the model calibration and verification analyses.  相似文献   

3.
This paper presents a hydrodynamic and water quality modeling system for Wissahickon Creek, Pa. Past data show that high nutrient levels in Wissahickon Creek were linked to large diurnal fluctuations in oxygen concentration, which combining with the deoxygenation effect of carbonaceous biological oxygen demand (CBOD) causes violations of dissolved oxygen (DO) standards. To obtain quantitative knowledge about the cause of the DO impairment, an integrated modeling system was developed based on a linked environmental fluid dynamics code (EFDC) and water quality simulation program for eutrophication (WASP/EUTRO5) modeling framework. The EFDC was used to simulate hydrodynamic and temperature in the stream, and the resulting flow information were incorporated into the WASP/EUTRO5 to simulate the fate and transport of nutrients, CBOD, algae, and DO. The standard WASP/EUTRO5 model was enhanced to include a periphyton dynamics module and a diurnal DO simulation module to better represent the prototype. The integrated modeling framework was applied to simulate the creek for a low flow period when monitoring data are available, and the results indicate that the model is a reasonable numerical representation of the prototype.  相似文献   

4.
Over the past several decades, reductions in phytoplankton stocks and increased water clarity in Lake Erie have resulted from phosphorus load abatement and the introduction of zebra (Dreissena polymorpha) and quagga mussels (D. bugensis). The relative impacts of these developments and their implications for lake management have remained difficult to delineate. To address this issue, we numerically model the complex biophysical interactions occurring in Lake Erie using a two-dimensional hydrodynamic and water quality model that is extended to include dreissenid mussel and zooplankton algorithms. The model reasonably simulates longitudinal trends in water quality as well as the dynamics of central basin hypoxia. Phosphorus is the limiting nutrient through the euphotic zone and its control decreases the algal growth rate and biomass ( ~ 55–60%). Filter feeding by dreissenid mussels also decreases algal biomass ( ~ 25–30%), simultaneously stimulating increased net algae growth through enhanced algal consumption and subsequent phosphorus recycling. Effective recycling implies that algae stocks are ultimately regulated by external phosphorus loads. Returning phosphorus loads to pre-abatement 1960s levels, in the presence of dreissenid mussels, results in a western basin algae concentration of ~ 0.7?mg?dry?weight?L?1 with a potential for nuisance algae growth.  相似文献   

5.
We propose a model of the development of a periphyton community in a stream under the influence of nutrients and light. Coupling the model with a nutrient transport model clarified the longitudinal distribution of both periphyton community and nutrients. The thickness of the periphyton mat, an important factor regulating nutrient exchange between the mat and overflowing water, was determined from water velocity and the periphyton biomass. We compared the results of this study with three observational data sets to overall validate our proposal: (1) a comparison of electrical conductance in two channels with different periphyton biomasses validated the model in the mass exchange between stationary and flowing water zones; (2) a comparison of the temporal variation in periphyton biomass and nutrient concentration in a once-through and a re-circulated water channel, validated the relationships among the periphyton biomass, the nutrient uptake rate, and the nutrient concentrations in the stationary water zone; and (3) a longitudinal distribution of the algal species composition of Stigeoclonium and Chamaesiphon, and the nutrient concentrations of a 140 m reach was reproduced and compared with measured data. The light intensity indirectly controlled the nutrient gradients along the stream by the periphyton biomass in the third application.  相似文献   

6.
The Monod method is widely used to model nutrient limitation and primary productivity in water bodies. It offers a straightforward approach to simulate the main processes governing eutrophication and it allows the proper representation of many aquatic systems. The Monod method is not able to represent the nutrient luxury uptake by algae, which consists of the excess nutrient uptake during times of high nutrient availability in the water column. The Droop method, which is also used to model nutrient limitation and primary productivity, takes into account the luxury uptake of nutrients. Because of the relative complexity of the Droop method, it has not been systematically adopted for the simulation of large stream networks. The Water Quality Analysis Simulation Program (WASP) version 7.1 was updated to include nutrient luxury uptake for periphyton growth. The objective of this paper is to present the new nutrient limitation processes simulated by WASP 7.1 and to compare the performance of the Droop and the Monod methods for a complex stream network where periphyton is the main organism responsible for primary productivity. Two applications of WASP 7.1 with the Droop and Monod methods were developed for the Raritan River Basin in New Jersey. Water quality parameters affecting the transport and fate of nutrients were calibrated based on observed data collected for the Raritan River total maximum daily load. The dissolved oxygen and nutrients simulated with WASP 7.1, obtained with the Droop and Monod methods, were compared at selected monitoring stations under different flows and nutrient availability conditions. The comparison of the WASP 7.1 applications showed the importance of using the Droop method when periphyton was the main organism responsible for primary productivity. The data simulated with the Droop method resulted in good agreement with the observed data for dissolved oxygen, ammonia-nitrogen, nitrate-nitrogen, and dissolved orthophosphate at the selected stations. The Monod method was not able to capture the diel dissolved oxygen variation when nutrients were scarce, and it resulted in unrealistic diel variations of nutrients at times of strong primary productivity at some locations.  相似文献   

7.
A conceptual process model was developed to examine the potential for late summer ammonia toxicity in shallow lakes. Processes represented in the model were macrophyte decay; growth, death, and sedimentation of phytoplankton; growth and death of zooplankton; nitrification; volatilization; and chemical equilibria (carbonate and ammonium systems). Peak NH3 concentrations occur at the peak of the phytoplankton bloom that develops about 2 weeks after macrophyte decay starts, when the pH is elevated. Ammonia peaks are highly transient, lasting <1 day. It is hypothesized that late summer ammonia toxicity following macrophyte senescence may be a common but generally unrecognized phenomenon in shallow lakes.  相似文献   

8.
The overall goal of this project was to quantify the long-term water quality impacts of land management changes associated with increased demands for corn as a transportation biofuel feedstock in the United States. A modeling approach that considers a nonpoint source model, Groundwater Loading Effects of Agricultural Management Systems and National Agricultural Pesticide Risk Analysis, was used to simulate annual losses in runoff, percolation, erosion, nitrate-nitrogen, total phosphorus, atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), and pyraclostrobin (Methyl {2-[1-(4-chlorophenyl)-1H-pyrazol-3-yloxymethyl] phenyl} methoxycarbamate) to the edge-of-field and bottom-of-root zones associated with multiple cropping scenarios. Model results for representative soils, throughout Indiana, were analyzed to determine 10% (worst case) and 50% (average case) probability of exceedence in the aforementioned water quality indicators. Modeling results indicated significant differences (p<0.05) in water quality indicators between continuous corn and corn-soybean rotations. The results showed that agricultural management decisions would have greater impacts on nutrient, runoff, erosion, and pesticides losses from agricultural fields compared to water quality indicators associated with the projected changes in crop rotation systems. The model results point to the need for additional research to fully understand the water impacts of land management decisions associated with corn grain as a feedstock for biofuel production.  相似文献   

9.
Effects of chronic concentrations of linuron (0, 0.5, 5, 15, 50, and 150 micrograms/L) were studied in indoor, macrophyte dominated, freshwater microcosms. The concentrations were kept at a constant level for 4 weeks. This paper is the first in a series of two and summarizes the course of the linuron concentrations in time and its effects on macrophytes, periphyton, and phytoplankton. These endpoints were studied from 3 weeks before the start of the treatment until 11 weeks after the start. The degradation of linuron in the water was lower at higher treatment levels, probably due to a decrease in pH. Linuron treatment resulted in a decrease in biomass of the macrophyte Elodea nuttallii and a clear decrease in abundance of the algae Cocconeis, Chroomonas, and Phormidium foveolarum. It was found that Cocconeis first decreased in biovolume and after 2 weeks also in abundance. The alga Chlamydomonas increased in abundance at the two highest doses, resulting in higher chlorophyll-a levels. The NOECs of 0.5 micrograms/L for the inhibition of the growth and photosynthesis of Elodea nuttallii, the abundance of Cocconeis and Chroomonas, and the oxygen and pH levels were the lowest recorded in the microcosms. The safety factors adopted by the EU in the Uniform Principles appeared to ensure adequate protection for the ecosystem in the case of chronic exposure to linuron.  相似文献   

10.
The total maximum daily load (TMDL) approaches that have relied mostly on deterministic modeling have inherent problems with considerations of a margin of safety and estimating probabilities of excursions of water quality standards expressed in terms of magnitude, duration, and frequency. A tiered probabilistic TMDL approach is proposed in this paper. A simple databased Tier I TMDL that uses statistical principles has been proposed for watersheds that have adequate water quality databases enabling statistical evaluations. Studies have shown that for many pollutants, event mean concentrations in runoff, wastewater loads, and concentrations in the receiving waters follow the log-normal probability distribution. Other probability distributions are also applicable. Tier II Monte Carlo simulation, using a simpler deterministic or black box water quality model as a transfer function, can then be used to generate time series of data, which fills the data gaps and allows estimation of probabilities of excursions of chronic standards that are averaged over periods of 4 or 30 days. Statistical approaches, including Monte Carlo, allow replacement of an arbitrary margin of safety by a quantitative estimation of uncertainty and enable linking the model results to the standards defined in terms of magnitude, frequency, and duration.  相似文献   

11.
The capacity of an existing model to simulate the growth (biomass) of a reed [Phragmites australis (Cav) Trin. ex Stuedel] in fresh water habitats using published field data and the incorporation of a submodel to estimate seasonal variation in reed mineral–nutrient content was investigated. This new feature also enabled one to estimate plant removal of mineral–nutrients from sediments. Model-predicted and observed shoot, rhizome, and root biomass showed concordance correlation coefficients of 0.97, 0.52, and 0.99, respectively. The nutrient analysis study showed that the annual uptakes of nitrogen and phosphorus from sediment by P. australis in the Denmark Vejlerne Nature Reserve were 143.9 and 16.1 kg?ha?1, respectively. The simulated results also showed that at the time of peak standing stock of minerals, shoots contained 40 and 22.5% of whole plant N and P, respectively. This suggested that the use of the common reed in wastewater treatment plants allows removal of nitrogen more easily than phosphorus, because a higher percentage of nitrogen is bound with the easily removable shoot parts.  相似文献   

12.
A suspended growth nitrification model was developed to describe nitrification dynamics in terms of chloramine, ammonia, nitrite, nitrate, and nitrifying bacteria concentrations in pilot-scale chloraminated drinking water systems. The model provided a semimechanistic base to study the regrowth and persistence of nitrifiers in chloraminated distribution systems. Results showed that the developed suspended growth model, without a biofilm nitrification component, was able to simulate and predict nitrification episodes in the pilot-scale systems. In the restricted low nutrient drinking water environment, growth kinetic parameters for nitrifiers were estimated to be significantly lower than ranges reported in the literature. The maximum specific growth rate and ammonia half-saturation constant for ammonia oxidizing bacteria were estimated to be 0.46?day?1and 0.023?mg NH3–N/L, respectively. In addition, an estimated reaction rate of 70±32?L/(mg?HPC?day) between chloramines and soluble microbial products suggests that heterotrophic growth can be a significant contributor to chloramine decay in some chloraminated distribution systems.  相似文献   

13.
Models Quantify the Total Maximum Daily Load Process   总被引:1,自引:0,他引:1  
Mathematical models have been used for many years to assist in the management of water quality. The total maximum daily load (TMDL) process is no exception; models represent the means by which the assimilative capacity of a water body can be quantified and a waste load allocation can be determined such that the assimilative capacity is not exceeded. Unfortunately, in many TMDLs, the use of models has not always adhered to the best modeling practices that have been developed over the past half-century. This paper presents what are felt to be the most important principles of good modeling practice relative to all of the steps in developing and applying a model for computing a TMDL. These steps include: Problem definition and setting management objectives; data synthesis for use in modeling; model selection; model calibration and, if possible confirmation; model application; iterative modeling; and model postaudit. Since mathematical modeling of aquatic systems is not an exact science, it is essential that these steps be fully transparent to all TMDL stakeholders through comprehensive documentation of the entire process, including specification of all inputs and assumptions. The overriding consideration is that data richness and quality govern the level of model complexity that can be applied to a given system. The model should never be more complex than the data allow. Also, in applying a model, one should always attempt to quantify the uncertainty in predictions. In general, quantifying uncertainty is easier with simple models, which is another reason to begin with a simple framework.  相似文献   

14.
Flow cytometry was applied in the study of bacteria and phytoplankton populations in five tropical reservoirs. Water quality between different reservoirs was compared and correlation analyses were carried out to investigate how the biomass of bacteria and phytoplankton related to other water quality parameters measured (i.e., temperature, dissolved oxygen, pH, conductivity, water transparency, turbidity, chlorophyll a, and total nitrogen and phosphorus). Average chlorophyll a concentrations were typically greater than 20?μg/L. Bacteria populations detected with flow cytometry were generally small in size (typically <0.08?μm3 or 0.3?μm equivalent spherical diameter) and contributed less than 13% of the total microbial biomass. Subpopulations of pico-, ultra-, and net phytoplankton were discriminated flow cytometrically by their red and orange autofluorescence. Cyanobacteria dominated four out of the five reservoirs in terms of numbers but only contributed more than 50% of the microbial biomass in two of the reservoirs. In general, local reservoirs were found to be phosphorus limited and alkaline conditions favored the growth of phytoplankton and bacteria.  相似文献   

15.
A spatially distributed and continuous hydrologic model focusing on total maximum daily load (TMDL) projects was developed. Hydrologic models frequently used for TMDLs such as the hydrologic simulation program—FORTRAN (HSPF), soil and water assessment tool (SWAT), and generalized watershed loading function (GWLF) differ considerably in terms of spatial resolution, simulated processes, and linkage flexibility to external water quality models. The requirement of using an external water quality model for simulating specific processes is not uncommon. In addition, the scale of the watershed and water quality modeling, and the need for a robust and cost-effective modeling framework justify the development of alternative watershed modeling tools for TMDLs. The hydrologic and water quality integration tool (HydroWAMIT) is a spatially distributed and continuous time model that incorporates some of the features of GWLF and HSPF to provide a robust modeling structure for TMDL projects. HydroWAMIT operates within the WAMIT structure, developed by Omni Environmental LLC for the Passaic River TMDL in N. J. HydroWAMIT is divided into some basic components: the hydrologic component, responsible for the simulation of surface flow and baseflow from subwatersheds; the nonpoint-source (NPS) component, responsible for the calculation of the subwatershed NPS loads; and the linkage component, responsible for linking the flows and loads from HydroWAMIT to the water quality analysis simulation program (WASP). HydroWAMIT operates with the diffusion analogy flow model for flow routing. HydroWAMIT provides surface runoff, baseflow and associated loads as outputs for a daily timestep, and is relatively easy to calibrate compared to hydrologic models like HSPF. HydroWAMIT assumes that the soil profile is divided into saturated and unsaturated layers. The water available in the unsaturated layer directly affects the surface runoff from pervious areas. Surface runoff from impervious areas is calculated separately according to precipitation and the impervious fractions of the watershed. Baseflow is given by a linear function of the available water in the saturated zone. The utility of HydroWAMIT is illustrated for the North Branch and South Branch Raritan River Watershed (NSBRW) in New Jersey. The model was calibrated, validated, and linked to the WASP. The NPS component was tested for total dissolved solids. Available weather data and point-source discharges were used to prepare the meteorological and flow inputs for the model. Digital land use, soil type datasets, and digital elevation models were used for determining input data parameters and model segmentation. HydroWAMIT was successfully calibrated and validated for monthly and daily flows for the NSBRW outlet. The model statistics obtained using HydroWAMIT are comparable with statistics of HSPF and SWAT applications for medium and large drainage areas. The results show that HydroWAMIT is a feasible alternative to HSPF and SWAT, especially for large-scale TMDLs that require particular processes for water quality simulation and minor hydrologic model calibration effort.  相似文献   

16.
The Stream Water Quality Model QUAL2E-UNCAS is widely used to simulate the dissolved oxygen of streams under steady flow conditions. It is the latest version of a series of water quality models that have a long history in systems analysis in water quality management, and has been applied to a number of streams and rivers around the world. This paper summarizes the conceptual representation of the computer model, briefly reviews a number of applications of the model that have been published in open literature, describes the included uncertainty analysis capability, and discusses the importance of field data in model predictions. Experience with the QUAL2E model has proven the importance of site-specific data to model predictions. An accurate representation of the properties of the system significantly contributes to simulation success.  相似文献   

17.
It has been observed that submerged weirs in bendways realign the flow and in general improve navigation conditions. This qualitative observation has been the basis for field design. This paper presents a study of hydrodynamics in the Victoria Bendway in the Mississippi River using three-dimensional numerical simulations. A numerical model, CCHE3D, was applied and computational results were compared to three-dimensional velocity data provided by the U.S. Army Corps of Engineers with reasonable agreement. The numerical simulation results were then used to analyze helical currents due to the channel curvature and the presence of submerged weirs. The simulated flow realignment near the free surface indicates that the flow conditions in the bendway were improved by the submerged weirs, however, the effectiveness of each weir depends on its alignment, local channel morphology, and flow conditions.  相似文献   

18.
The numerical simulation of unsteady open channel flows is very commonly performed using the one-dimensional shallow-water model. Friction is one of the relevant forces included in the momentum equation. In this work, a generalization of the Gauckler-Manning friction model is proposed to improve the modeling approach in cases of dominant roughness, unsteady flow, and distorted cross-sectional shapes. The numerical stability conditions are revisited in cases of dominant friction terms and a new condition, complementary to the basic Courant-Friedrichs-Lewy condition, is proposed. Some test cases with measured data are used to validate the quality of the approaches.  相似文献   

19.
This case study paper presents results on the application of the HEC-6 model to the main stem of the Kankakee River in Illinois, a distance of about 39.3?km. Modeling was performed to develop comprehensive plans for enhancing the aquatic habitats and also to forecast future sedimentation problems if specific management practices are implemented. The paper concentrates on the modeling aspects of this research. The extent of the model was from the Stateline Bridge to Kankakee Dam in Kankakee. The HEC-6 model, originally developed by the Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers, was adapted for this application. The model was run, calibrated, and verified for both the hydraulic and sediment components. The hydraulic component was calibrated through comparison of measured yearly hydrographs with computed values for three gauging stations on the river. The hydrologic component was verified for the same three gauging stations for two yearly hydrographs for 2 additional water years. The sediment component was calibrated with river cross-sectional data collected by the Illinois State Water Survey in 1980 and 1999. The calibrated and verified hydraulic and calibrated sediment components then were used to predict future changes in water surface elevations and thalweg elevations for a 20-year period beginning in 1999, the last date for which river cross-sectional data are available.  相似文献   

20.
Pipe network computer models of water systems that include hydropneumatic tanks can be used to evaluate performance of existing water systems or in the design of new distribution facilities. Pipe network models allow the modeling of storage tanks in which the free water surface is variable with the inflow and outflow. Most existing pipe network models do not allow direct input of hydropneumatic tanks. Some writers describe modeling of hydropneumatic tanks as a fixed diameter tank of an equivalent area based on the maximum and minimum operating pressures of the tank. In real hydropneumatic tanks, the pressure change due to input or output of water is greater as more water is stored in the tank. A relationship to define the geometry of a free water surface tank that would exactly simulate a hydropneumatic tank was derived which can be input into a pipe network model using the variable area tank feature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号