首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Memon FA  Butler D 《Water research》2002,36(5):1351-1359
This paper presents the results of a monitoring and modelling programme, carried out to study the processes occurring in gully pots during dry weather. The monitoring programme involved estimation of the change in gully pot liquor quality, under field and laboratory conditions. The contents (i.e. liquor and sludge) of pots draining five different types of roads were monitored over dry periods in the winter and summer. A bench scale study was carried out to study the influence of temperature variations and sludge digestion by-products on gully liquor quality. The change in quality was measured in terms of chemical oxygen demand (COD), dissolved oxygen (DO) and ammonium concentration. The trends for change in COD and DO, were found to be broadly similar for all road types. However, ammonium transformation was found to follow different patterns at different locations. Several dry weather processes, such as COD decay, ammonium transformation, oxygen depletion and uptake by sludge, oxygen transfer from the atmosphere and benthic release of COD, have been identified. Other processes, found to take place during dry weather, include development of a scum layer over the surface of the gully liquor and sludge bulking. A model is proposed which can predict the change in gully liquor quality in terms of COD, DO and ammonium concentrations. Data collected during the study has been used to successfully calibrate and verify the model.  相似文献   

2.
A model for chlorine concentration decay in pipes   总被引:7,自引:0,他引:7  
A model that accounts for transport in the axial direction by convection and in the radial direction by diffusion and that incorporates first order decay kinetics has been developed to predict the chlorine concentration in a pipe in a distribution system. A generalized expression for chlorine consumption at the pipe wall is used to solve the governing equation and to determine the average chlorine concentration at any location in the pipe. Three non-dimensional parameters are used to determine the concentration and a methodology to determine them in pipe networks is proposed. The range of values of these dimensionless parameters where wall consumption is significant are determined. The methodology is applied to field measurements of chlorine concentration in a distribution network.  相似文献   

3.
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO3 and NH4 have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors.  相似文献   

4.
《Water research》1996,30(4):1023-1025
A simple method was proposed to measure the readily biodegradable COD in wastewater. The method, denoted as the single-OUR method, is based on monitoring the oxygen concentration decrease in a single oxygen utilization measurement. The oxygen consumption related to readily biodegradable COD can be estimated from the oxygen concentration profile. In order to transfer this oxygen consumption to the readily biodegradable COD a calibration curve is needed. For the evaluation of the method a batch OUR test was performed in parallel. A good agreement between the two methods was obtained.  相似文献   

5.
An anaerobic sludge blanket process, termed the anaerobic baffled reactor (ABR), has been developed and shows promise for industrial wastewater treatment. It combines the advantages of high stability and reliability with a high void volume. The risk of clogging and sludge bed expansion with resulting high microbial losses is reduced and there is no need for special gas collection or biological solids separation systems. Organic loadings as high as 36 g COD l?1day?1 have been achieved with COD removal rates of more than 24 g COD l?1 day?1 and methane production rates exceeding 6 volumes per day per unit volume of reactor. The hypothesis, that the ABR may be adequately modeled as a fixed-film reactor, has been supported. Therefore, a unified approach, based on fundamentals of bacterial kinetics and mass transport, appears useful for modeling this and similar systems. Pilot plant studies are necessary to determine the scaling factors of the system as well as the overall efficiency and costs.  相似文献   

6.
Optimal aeration control in a nitrifying activated sludge process   总被引:1,自引:0,他引:1  
Amand L  Carlsson B 《Water research》2012,46(7):2101-2110
An important tool to minimise energy consumption in activated sludge processes is to control the aeration system. Aeration is a costly process and the dissolved oxygen level will determine the efficiency of the operation as well as the treatment results. What aeration control should achieve is closely linked to how the effluent criteria are defined. This paper explores how the aeration process should be controlled to meet the effluent discharge limits in an energy efficient manner in countries where the effluent nitrogen criterion is defined as average values over long time frames, such as months or years. Simulations have been performed using a simplified Benchmark Simulation Model No. 1 to investigate the effect of different levels of suppressing the variations of the effluent ammonium concentration. Optimisation is performed where the manipulated variable for aeration (the oxygen transfer coefficient, KLa) is minimised with the constraint that the average daily flow-proportional ammonium concentration in the effluent should reach a desired level. The optimisation results are compared with constant dissolved oxygen concentrations and supervisory ammonium control with different controller settings. The results demonstrate and explain how and why energy consumption can be optimised by tolerating the ammonium concentration to vary around a given average value. In these simulations, the optimal oxygen peak-to-peak amplitude range between 0.7 and 1.8 mg/l depending on the influent variation and ammonium level in the effluent. These variations can be achieved with a slow ammonium feedback controller. The air flow requirements can be reduced by 1-4% compared to constant dissolved oxygen set-points. Optimal control of aeration requires up to 14% less energy than needed for fast feedback control of effluent ammonium.  相似文献   

7.
传统膜生物反应器(MBR)的能耗较大、运行费用较高,为此开发了射流曝气MBR工艺。采用其处理某开发区污水,在进水COD为60~300 mg/L、氨氮为3~30 mg/L、总磷为0.8~5 mg/L、水力停留时间为2 h的条件下,出水COD、氨氮、总磷的平均值分别为25、1.27、1.66 mg/L,平均去除率分别为84%、93%、46%。反应器采用射流曝气方式,提高了氧的转移效率,大幅降低了能耗,与常规MBR相比则节能达70%。近一年的运行表明,射流曝气对膜丝的正常工作没有任何影响,其清洗周期保持不变。  相似文献   

8.
The aim of this paper is to show how standard hydrogeologic software, usually used to model contaminant transport in groundwater under unsaturated conditions, can also be used to model gas transport in unsaturated porous media. Physical processes involved in the interaction between the atmosphere and the unsaturated soils are considered: transport by diffusion through the air and the groundwater, exchange between the liquid and gas phases and consumption. These physical processes are incorporated into the governing equations of a groundwater numerical code; by considering air, contained in the unsaturated soil, as water in the seepage numerical model, the air effectively becomes fluid within the numerical code. Then, the investigated gas is defined as the contaminant in the transport model, which is transported by -the air for the modeller-, and -water for the numerical code-. The over-riding assumption is that the air profiles and, therefore, water profiles of volume contents remain constant. The approach is illustrated using two examples, which consider the transport of oxygen. The first deals with oxygen distribution through a laboratory-cell diffusion containing reactive mining tailings. The second deals with the oxygen fluxes through the vadose zone, between the atmosphere and an unconfined aquifer's water table. Both examples consider different cases of oxygen consumption.  相似文献   

9.
The Marikina River in the Philippines has been polluted by Payatas landfill leachate, and domestic and agricultural waste. This study monitored the water quality at five stations on the river and two stations on two creeks that discharge to the river to determine the effects of Payatas landfill and to estimate pollution loading. The dissolved oxygen (DO), chemical oxygen demand (COD) and other water quality parameters were compared with the Philippines Standards for river water classification. It was found that Payatas leachate has a significant influence on the DO and COD levels as well as other water quality parameters. Per capita pollution loading for Quezon City was found to be lower than for Europe and Japan. The effect of leachate is more significant during the dry season. It is recommended that a leachate collection system be established to prevent leachate form entering Payatas creek, and that the Patayas landfill be replaced with a modern landfill site, conforming to current best practice at another location.

List of Abbreviation: BOD= Biological Oxygen Demand COD = Chemical Oxygen Demand DO = Dissolved Oxygen EC = Electrical Conductivity M1, M2, M3, M4, M5 = monitoring stations TDS = Total Dissolved Solids TSS = Total Suspended Solids  相似文献   


10.
Oxygen microprofiles of trickling filter biofilms   总被引:1,自引:0,他引:1  
Oxygen microprofiles of photosynthetic and non-photosynthetic biofilms of trickling filters from a sewage treatment plant were studied with Clark type oxygen microelectrodes. The oxygen profiles in photosynthetic biofilms exhibited pronounced changes with changing light conditions, and the profiles of both types of biofilm were affected by addition of nutrients. The existence of a 100–500 μm thick diffusive boundary layer in the water just above the biofilm was evident from all recordings. The O2 gradient in this boundary layer was used to calculate diffusive fluxes of oxygen exchanged between the biofilms and the overlying water phase. The calculated fluxes were compared to the overall oxygen consumption rates measured experimentally and to the photosynthetic activity as measured with the microelectrodes. Approximately 60–70% of the oxygen produced in the algal films during photosynthesis was consumed within the films. At least one third of this consumption may be due to photorespiration. Dark/light and light/dark shifts demonstrated a very dynamic nature of the O2 status of the algal films, showing an increase from anaerobic conditions to 500% air saturation and vice versa within 25 min. In the same regime, pH profiles showed a similar dynamic change, whereby pH varied between 8.1 and 9.7 in the same period.

The data obtained with the non-photosynthetic biofilms show that the oxygen respiration and oxygen penetration are mostly limited by diffusive oxygen transport through the boundary layer. The overall oxygen consumption of the heterotrophic biofilms equalled within ± 10% the estimates made from flux calculations.  相似文献   


11.
《Water research》1996,30(4):825-836
This paper presents a new method for the simultaneous determination of inhibition kinetics of both carbon oxidation and nitrification with the RODTOX (Rapid Oxygen Demand and TOXicity tester) respirometric biosensor. The biokinetic parameters of carbon oxidation and nitrification are estimated on the basis of respirometric data obtained from batch experiments with pulse injection of a mixture of a readily biodegradable carbon (acetic acid) and nitrogen (ammonium chloride) source. This estimation is based on a Double Monod mathematical model and a nonlinear parameter estimation algorithm. Performing batch tests with six to eight different concentrations of a toxic compound allows the deduction of the dependence of the kinetic parameters on the toxicant concentrations. The time necessary for a complete determination of the inhibition kinetics is approx. 8 h. Practical applications of the developed method are given.  相似文献   

12.
Combining the processes of partial nitrification and anaerobic ammonium oxidation (ANAMMOX) is an attractive wastewater-treatment technology for nitrogen removal. In this study we investigated partial nitrification by implementing a closed down-flow hanging sponge (DHS) reactor operated at controlled oxygen concentrations. Basic concept of DHS process is similar to that of trickling filter, in which oxygen concentration can be easily manipulated by controlling airflow to the reactor. The closed reactor was fed with artificial wastewater containing NH(4)Cl and operated with an HRT of 1.5h at 30 degrees C. Oxygen inside the reactor was maintained below 3% (1.2mgDO x L(-1)) (DO-dissolved oxygen) except during the startup periods. Five months of continuous operation showed that there was a strong relationship between oxygen concentration and nitrite production. The ratio of nitrite produced relative to ammonium oxidized increased by decreasing oxygen concentration. Partial nitrification was satisfactorily accomplished under oxygen limitation at around 0.5% in the gas phase (0.2mgDOL(-1)). The system showed a high ammonium-removal rate, at a maximum of 1.46kg NH(4)(+)-Nm(-3)day(-1), even at limited oxygen concentration. We also found that oxygen concentration played an important role in the production of nitrous oxide, which increased with decreasing oxygen concentration.  相似文献   

13.
《Water research》1996,30(5):1069-1076
This paper presents some new results on the aerobic degradation of dichloromethane (DCM) and 1,2-dichloroethane (DCA) in a fluidized bed reactor without direct oxygenation. Oxygen was supplied by diffusion through a synthetic membrane. High bacteria concentrations and high degradation rates were obtained. DCM degradation reached 1400 mg (1 h)−1 and DCA degradation up to 600 mg (1 h)−1. Yields for oxygen consumption and biomass production could be established. Haldane kinetics were suitable to describe the influence of DCA and oxygen concentration on the degradation rate of DCA. The DCM degradation rate is only influenced by the substrate concentration. Kinetic parameters for the Haldane model were reached in batch and extended-culture experiments. Extended-culture experiments keep the substrate concentration in the reactor constant and allow a determination of the growth rate by evaluation of the reaction volume.  相似文献   

14.
臭氧/生物活性炭工艺深度处理焦化废水中试   总被引:4,自引:0,他引:4  
以经常规生化工艺处理后的焦化废水为研究对象,通过中试考察了臭氧/生物活性炭工艺深度处理焦化废水的效果和可行性。通过测定生化呼吸曲线及相对耗氧速率来判定焦化废水可生化性的提高程度及活性炭生物膜的成熟情况。结果表明,该工艺用于焦化废水的深度处理是完全可行的。在臭氧投加量为15 mg/L的条件下,可显著提高焦化废水的可生化性,臭氧氧化对COD的平均去除率为10.13%。采用自然挂膜方法培养生物膜,生物膜的成熟时间为25 d左右。在生物活性炭稳定运行后,其对COD和氨氮的平均去除率分别可达28.75%和43.80%,出水COD和氨氮的平均值分别为87.50和7.6 mg/L,均达到了《污水综合排放标准》(GB 8978—1996)中的一级标准。  相似文献   

15.
This study investigates the performance of a newly developed technology, known as simultaneous anaerobic oxidation/partial nitrification–denitrification (SAO/PND), for treating strong wastewater under laboratory conditions. Excellent results are achieved, with maximum chemical oxygen demand (COD) and nitrogen removal of 98% and 96%, respectively, when treating synthetic wastewater with influent 4120 mg/L COD and 210 mg/L NH4+–N. Appropriate living environment in this single-process technology favoured the co-existence of various bacterial communities, and removal mechanisms by these organisms are identified and confirmed. The results showed that the single-process SAO/PND technology required 95% and 90% less oxygen compared to conventional aerobic processes and combined systems, respectively. Furthermore, this newly developed technology produced 60% and 44% less sludge, respectively, in comparison with the mentioned conventional systems. This study shows that the single-process SAO/PND technology is a promising sustainable alternative to conventional systems, as it combines high efficiency and cost-effectiveness with simple operation and maintenance requirements.  相似文献   

16.
Clogging in intermittent sand filter (ISF) systems was analyzed using an unsaturated flow model coupled with a reactive transport model. Based on the results of a model sensitivity analysis, several variables were determined to be important in the clogging phenomena observed in ISFs, including hydraulic loading rate, influent chemical oxygen demand (COD) concentration, filter dosing frequency, and time of operation. Several modes of operation were identified that minimize the growth of bacteria at the filter surface. Following the sensitivity analysis, several case studies where ISF clogging was documented were simulated using the model. The results from the case study model simulations were found to be correlated with the total suspended solids loading rate (TSSLR) at the point of clogging. A model was developed that relates biomass development at the surface of ISFs with the TSSLR that can be sustained without clogging. The engineering significance of the model is presented in terms of operational and design considerations.  相似文献   

17.
Anaerobic ammonium oxidation, nitrification and removal of COD was studied at ambient temperature (18 °C ± 3) in an anoxic/aerobic granular sludge reactor during 390 days. The reactor was operated in a sequencing fed batch mode and was fed with acetate and ammonium containing medium with a COD/N ratio of 0.5 [g COD/gN]. During influent addition, the medium was mixed with recycled effluent which contained nitrate in order to allow acetate oxidation and nitrate reduction by anammox bacteria. In the remainder of the operational cycle the reactor was aerated and controlled at a dissolved oxygen concentration of 1.5 mg O2/l in order to establish simultaneous nitritation and Anammox. Fluorescent in-situ hybridization (FISH) revealed that the dominant Anammox bacterial population shifted toward Candidatus “Brocadia fulgida” which is known to be capable of organotrophic nitrate reduction. The reactor achieved stable volumetric removal rates of 900 [g N2-N/m3/day] and 600 [g COD/m3/day]. During the total experimental period Anammox bacteria remained dominant and the sludge production was 5 fold lower than what was expected by heterotrophic growth suggesting that consumed acetate was not used by heterotrophs. These observations show that Anammox bacteria can effectively compete for COD at ambient temperatures and can remove effectively nitrate with a limited amount of acetate. This study indicates a potential successful route toward application of Anammox in granular sludge reactors on municipal wastewater with a limited amount of COD.  相似文献   

18.
COD and nitrogen removal by biofilms growing on gas permeable membranes   总被引:18,自引:0,他引:18  
A bioreactor was constructed and used to treat a synthetic wastewater containing ammonium acetate and trace nutrients for about 190 days. The reactor was aerated by means of bundles of gas-permeable hollow-fiber membranes that were installed in the reactor. The membranes provided a specific surface area of 422 m(2)/m(3) and the external surface of the membranes rapidly became covered in an active biofilm. The membrane bundles were agitated by an internal gas recycle. The gas bubbles in the water encouraged fiber-fiber contact and were intended to control biofilm growth. Chemical oxygen demand (COD) removals in excess of 95% were achieved in a 6h nominal detention time. Nitrification developed rapidly and complete oxidation of the influent ammonium was evident within 20 days. Even though the reactor was equipped with a large membrane surface area, the oxygen was consumed within the biofilm growing on the membrane surface. As a result, the external dissolved oxygen (DO) dropped to zero and the reactor was able to support essentially complete denitrification. After about 3 months of operation the reactor showed excellent removals of both COD and inorganic nitrogen but the performance could not be sustained. Excess biofilm accumulation eventually contributed to a deterioration in process performance. This study demonstrates that while membrane aeration can provide simultaneous BOD and N removal in the same reactor, the membrane modules/bioreactor must be designed to allow for the development of thick biofilms. In addition, options for controlling the biofilm thickness need to be investigated.  相似文献   

19.
Irene Jubany 《Water research》2009,43(11):2761-2772
Partial nitrification (ammonium oxidation to nitrite) has gained a lot of interest among researchers in the last years because of its advantages with respect to complete nitrification (ammonium oxidation to nitrate): decrease of oxygen requirements for nitrification, reduction of COD demand and CO2 emissions during denitrification and higher denitrification rate and lower biomass production during anoxic growth.In this study, an extremely high-strength ammonium wastewater (3000-4000 mg N L−1) was treated in a continuous pilot plant with a configuration of three reactors in series plus a settler. The system was operated under the maximum possible volumetric nitrogen loading rate, at mild temperature (around 25 °C), with high sludge retention time (around 30 d) and significant nitrifying biomass concentration (average of 1800 ± 600 mg VSS L−1). The implemented control loops transformed the system, which was operating with complete nitrification, into a continuous partial nitrification system. Nitrite oxidizing bacteria (NOB) washout was accomplished with local control loops for pH and dissolved oxygen (DO) with proper setpoints for NOB inhibition (pH = 8.3 and DO = 1.2-1.9 mg O2 L−1) and with an inflow control loop based on Oxygen Uptake Rate (OUR) measurements, which allowed working at the maximum ammonium oxidation capacity of the pilot plant in each moment. This operational strategy maximized the difference between ammonia oxidizing bacteria (AOB) and NOB growth rates, which is the key point to achieve a fast and stable NOB washout. The results showed a stable operation of the partial nitrification system during more than 100 days and NOB washout was corroborated with fluorescence in-situ hybridization (FISH) analysis.  相似文献   

20.
Hasar H  Xia S  Ahn CH  Rittmann BE 《Water research》2008,42(15):4109-4116
The hydrogen-based membrane biofilm reactor (MBfR) has been well studied and applied for denitrification of nitrate-containing water and wastewater. Adding an oxygen-based MBfR allows total-nitrogen removal when the input nitrogen is ammonium. However, most wastewaters also contain a significant concentration or organic material, measured as chemical oxygen demand (COD). This study describes experiments to investigate the removal of organic and nitrogenous compounds in the combined Aerobic/Anoxic MBfR, in which an Aerobic MBfR (Aer MBfR) precedes an Anoxic MBfR (An MBfR). The experiments demonstrate that the Aer/An MBfR combination accomplished COD oxidation and nitrogen removal for a total oxygen demand flux (i.e., from COD and NH(4) oxidations) in the range of 1.2-7.2gO(2)/m(2)-d for 4.5psi (0.3atm) oxygen pressure to the Aer MBfR, but was overloaded and did not accomplish nitrification for the total oxygen demand load higher than 14gO(2)/m(2)-d. Total-nitrogen removal was controlled by nitrification in the Aer MBfR, because the An MBfR denitrified all NO(3)(-) provided to it by the Aer MBfR. The overload of total oxygen demand did not affect COD oxidation in the Aer MBfR, but caused a small increase of COD in the An MBfR due to net release of soluble microbial products (SMP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号