首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a simple approach based on self assembled polystyrene-block-poly(4-vinylpyridine) (PS-P4VP) copolymer micelles for the fabrication of ordered 2-dimesional nano-arrays of Ag2S and Ag2Se. The nanoparticles were synthesized directly inside the P4VP micelles core at room temperature and nano-arrays were obtained by spin coating on silicon wafer. High resolution-transmission electron microscopy and powder X-ray diffraction characterization suggests the nanoparticles are crystalline. Higher band gap energy (1.76 eV for Ag2S and 1.35 eV for Ag2Se) compared to their bulk materials obtained from the absorption studies reveals that the nanoparticles are within the quantum confinement regime.  相似文献   

2.
《Materials Letters》2006,60(25-26):3038-3040
Ag2Se nanocrystals were rapidly synthesized by the sonochemical reaction between Ag ions and Se powders in diluted ammonia water. By using different complexing agents (NH3, citric acid or KSCN) in the reaction system, Ag2Se nano-spheres with different sizes were obtained. X-ray diffraction patterns showed that the samples obtained was orthorhombic β-Ag2Se. The morphology was characterized by scanning electron microscopy (SEM). This mild method may be extended to prepare other chalcogenides nanocrystalline at room temperature.  相似文献   

3.
Preparation and characterization studies on polycrystalline samples of Ag1 – xCuxl wherex=0.05, 0.1, 0.15, 0.2 and 0.25, respectively, have been reported. Samples were analysed using powder X-ray diffraction (XRD) and differential scanning calorimetric (DSC) techniques in order to identify the compositions and phase transition temperatures. A.c. electrical conductivity studies were carried out on pelleted specimens of various compositions in the frequency range 65.5 kHz to 1 Hz and over the temperature range 293–412 K. DSC results obtained in the temperature range 373–473 K have shown that the ß- to -phase transition temperature is enhanced from 426 K to 438 K whenx is increased from 0.05 to 0.25. XRD results have indicated that there is a shift ind-spacing when the Cul content is increased, suggesting changes in the crystal structure. Typical XRD patterns recorded for the composition Ag0.95Cu0.05l at three different temperatures (room temperature, 373 and 473 K, respectively) have confirmed that both face-centred cubic and hexagonal phases would be present at room temperature and at 373 K as well, whereas at 473 K the structure would be purely body-centred cubic in nature. A.c. impedance analysis of the above samples appears to suggest that their electrical conductivity, predominantly due to the migration of Ag+ ions, lies in the order of 10–4S cm–1 at room temperature.  相似文献   

4.
Alloy nanoparticles (NPs) can offer a wide range of opportunities for various applications due to their composition and structure dependent properties such as multifunctionality, electronic heterogeneity, site-specific response, and multiple plasmon resonance bands. In this work, the fabrication of self-assembled PdxAg1-x NPs alloy nanostructures with distinct size, density, shape, and composition is demonstrated via the solid-state dewetting of sputtered Pd/Ag thin films on c-plane sapphire. The initial stage of bilayer dewetting exhibits the nucleation of voids, followed by the expansion of voids and cluster breakdown and finally shape transformation along with the temperature control. Bilayer composition shows a substantial influence on the dewetting such that the overall dewetting is enhanced along with the increased Ag composition, i.e. Pd0.25Ag0.75 > Pd0.5Ag0.5 > Pd0.75Ag0.25. On the other hand, the size and density of NPs can be efficiently controlled by varying the initial thickness of bilayers. Reflectance peaks in UV and near-infrared (NIR) regions and a wide absorption band in the visible region arisen from the surface plasmon resonance are observed in reflectance spectra. The peak intensity depends on the composition of PdxAg1-x NPs and the NIR peaks gradually blue-shift with the size decrement.  相似文献   

5.
The current-voltage characteristics of Ag2Se/Se/M thin film sandwiches were studied as functions of the shapes of the electrodes, which were either symmetrical or asymmetrical, as well as their composition (M is a metal (gold, chromium or silver) or Ag2Se). A polarized memory switching effect independent of air exposure was observed.The first commutation occurs at a formation voltage VF which is dependent on the selenium thickness. After some cycles this voltage stabilizes to a value VS (where VS<VF). VS is a function of temperature, frequency and the maximum reverse voltage but is independent of the selenium thickness.All these results are explained in terms of Ag+ ionic diffusion: the formation is related to the growth of Ag2Se dendrites through selenium as shown by temperature-dependent experiments. Furthermore the variations in VS are accounted for by ionic motion localized at the M-Se interface.  相似文献   

6.
Bismuth ferrite thin films were deposited on Pt/Ti/SiO2/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N2 and O2) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.  相似文献   

7.
Nano‐floating gate memory (NFGM) devices are transistor‐type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p‐type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle–particle interactions. CoFe2O4 NP‐based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read Ion/Ioff) of ≈2.98 × 103, and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high‐performance organic memory devices.  相似文献   

8.
An all-solution processed metal-oxide-semiconductor (MOS) capacitor structure containing gold (Au) nanoparticles (NPs) within HfO2 high-κ oxide was fabricated. The ultra-thin (~ 10 nm) HfO2 high-κ tunnel oxide layer was prepared by sol-gel process and showed good electrical properties, which were critical to superior memory property of the MOS structure. Au NPs with particle size of about 3.3 nm were synthesized by chemical reduction method and then self-assembled onto HfO2 tunnel oxide. Finally, a Si/HfO2/Au NPs/HfO2 memory structure was constructed after the substrate had been covered with a sol-gel-derived HfO2 control oxide layer (~ 13 nm). By utilizing high-quality HfO2 as tunnel oxide, the MOS structure containing Au NPs showed memory effect even at a low voltage of ± 3 V. Although its memory window was only 0.8 V by a swapping voltage between ± 5 V, the MOS showed desirable retention characteristics. Therefore, we have fabricated nanocrystal memory device with sol-gel derived HfO2 high-k tunnel oxide which are attractive for low operation voltage non-volatile memory applications.  相似文献   

9.
The phase diagram of the system Na2WO4Ag2WO4 was determined with DTA and x-ray diffractometry. The intermediate β-phase of Na2WO4 disappears above 0.03 mole fraction of Ag2WO4. The intersolubility of both compounds is good in the low temperature γ-phase of Na2WO4 and in the high temperature α-phase. The electrical ac conductivity was measured as a function of temperature through the phase diagram.  相似文献   

10.
Ag2Se nanobelts are prepared through employing ZnSe nanobelts as templates via a facile cation exchange approach. The templates are derived from precursor ZnSe·0.5N2H4 nanobelts, which are synthesized by a simple hydrothermal method. As‐synthesized precursor nanobelts are with 200 nm in width and several hundreds of micrometers in length. Annealed in N2, they are transformed into ZnSe nanobelts with preserving their initial morphology. Following with a complete replacement of Zn2+ by Ag+, Ag2Se nanobelts with single crystalline are obtained via a cation‐exchange reaction. Combined with the Langmuir–Blodgett assembly technique, regular films of ZnSe nanobelts can be achieved on transparent glass substrates and Si wafers with interdigital Au electrode arrays. Further, the optical and electrical evolutions are investigated from ZnSe nanobelts to Ag2Se nanobelts. Finally, the resistive switching characteristic are carefully explored for Ag2Se nanobelts regularly arranged on interdigital Au microelectrodes. The results indicate that it is analogous to complementary resistive switching behaviors, which is different from that of traditional two terminal devices about previously reported Ag2Se. In order to clarify this phenomenon, a possible mechanism has been proposed and indirectly demonstrated through in situ SEM (scanning electron microscropy) observation.  相似文献   

11.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

12.
Single-crystalline Ag2Se complex nanostructures have been synthesized via a solvothermal route in which selenophene (C4H4Se) as a selenylation source reacts with AgNO3 at a temperature of 240 °C. An orthorhombic phase β-Ag2Se nanostructure was identified by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The wettability of the as-synthesized β-Ag2Se nanostructure was studied by measurement of the water contact angle (CA). Static water CA values of over 150° were obtained, which can be attributed to the β-Ag2Se complex nanostructure having a combination of micro- and nanostructures. The superhydrophobic Ag2Se nanostructure may find applications in self-cleaning. Additionally, the photocatalytic activity of the as-synthesized β-Ag2Se nanostructure was evaluated by photodegradation of rhodamine B (RhB) dye under ultraviolet (UV) light irradiation.  相似文献   

13.
Magnetoelectric multiferroic Bi0.7Dy0.3FeO3 (BDFO) thin films deposited on p-type Si (100) substrate using pulsed laser deposition technique demonstrated a saturated ferroelectric and ferromagnetic hysteresis loop at room temperature. More interestingly, the observed change in electric polarization with applied magnetic field in these films indicated the presence of room temperature magnetoelectric coupling behavior. Using high-frequency capacitance-voltage measurements, the fixed oxide charge density, interface trap density and dielectric constant were estimated on Au/BDFO/Si capacitors. These results suggest the integrated circuit compatible application potential of BDFO films in the field of micro-electro-mechanical systems and non-volatile memories.  相似文献   

14.
We have developed a procedure for the synthesis of phase-pure α- and β-Cu2V2O7. Thermal analysis and X-ray diffraction demonstrate that the β-phase (monoclinic structure) exists at low temperatures (stability range 25–610°C), while α-Cu2V2O7 (orthorhombic structure) is stable in the range 610–704°C. The α-phase observed during cooling, in particular at room temperature, is in a metastable state. The melting of the high-temperature phase γ-Cu2V2O7, which forms between 704 and 716°C, has the highest rate in the range 770–785°S and is accompanied by peritectic decomposition and oxygen gas release. Subsequent cooling gives rise to four exothermic peaks, one of which (780.9°C) is attributable to the crystallization of the peritectic melt, one (620.1°C) is due to the γ → α → β phase transformations of Cu2V2O7, and the other two arise from the crystallization of multicomponent low-melting-point eutectics containing α- and β-Cu2V2O7, CuVO3, and other compounds.  相似文献   

15.
Bi2Se3 thin films were deposited on the (100) oriented Si substrates by pulsed laser deposition technique at different substrate temperatures (room temperature −400 °C). The effects of the substrate temperature on the structural and electrical properties of the Bi2Se3 films were studied. The film prepared at room temperature showed a very poor polycrystalline structure with the mainly orthorhombic phase. The crystallinity of the films was improved by heating the substrate during the deposition and the crystal phase of the film changed to the rhombohedral phase as the substrate temperature was higher than 200 °C. The stoichiometry of the films and the chemical state of Bi and Se elements in the films were studied by fitting the Se 3d and the Bi 4d5/2 peaks of the X-ray photoelectron spectra. The hexagonal structure was seen clearly for the film prepared at the substrate temperature of 400 °C. The surface roughness of the film increased as the substrate temperature was increased. The electrical resistivity of the film decreased from 1 × 10−3 to 3 × 10−4 Ω cm as the substrate temperature was increased from room temperature to 400 °C.  相似文献   

16.
Graphene oxide (GO)‐based resistive‐switching (RS) memories offer the promise of low‐temperature solution‐processability and high mechanical flexibility, making them ideally suited for future flexible electronic devices. The RS of GO can be recognized as electric‐field‐induced connection/disconnection of nanoscale reduced graphene oxide (RGO) conducting filaments (CFs). Instead of operating an electrical FORMING process, which generally results in high randomness of RGO CFs due to current overshoot, a TiO2‐assisted photocatalytic reduction method is used to generate RGO‐domains locally through controlling the UV irradiation time and TiO2 concentration. The elimination of the FORMING process successfully suppresses the RGO overgrowth and improved RS memory characteristics are achieved in graphene oxide–TiO2 (Go‐TiO2) nanocomposites, including reduced SET voltage, improved switching variability, and increased switching speed. Furthermore, the room‐temperature process of this method is compatible with flexible plastic substrates and the memory cells exhibit excellent flexibility. Experimental results evidence that the combined advantages of reducing the oxygen‐migration barrier and enhancing the local‐electric‐field with RGO‐manipulation are responsible for the improved RS behaviors. These results offer valuable insight into the role of RGO‐domains in GO memory devices, and also, this mild photoreduction method can be extended to the development of carbon‐based flexible electronics.  相似文献   

17.
Abstract

High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10?4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately –60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.  相似文献   

18.
K. Somogyi  G. Sáfrán 《Vacuum》2005,80(4):350-355
Ag2Se thin epitaxial layers were grown under vacuum conditions. The starting components were evaporated sequentially on various substrates and followed by annealing to obtain topotaxial layers, which were either poly- or monocrystalline, depending on the substrate. Ag2Se undergoes a reversible first order phase transition at about 133 °C. The temperatures of the phase transitions are different on heating and cooling and these transitions and associated hysteresis can be demonstrated also by Hall measurements of electron concentration and electron mobility. The mobility shows a sudden decrease at the critical temperature on heating and a sudden increase on cooling. In the present experiments concentration dependences of the mobilities and of the resistivity at the critical temperatures defining the onset of hysteresis (four points), were measured for both types of structure. The μ(n) and ρ(n) dependences show a c0n-c power type character with exponents −0.33 and −0.43 for mobilities and −0.58 and −0.72 for the resistivity. The slopes are only slightly different for the poly- and monocrystalline samples. Also the ratios of c0-s are about 1.4 and 1.6, respectively.  相似文献   

19.
The preparation and the partial phase diagrams Ag2X“As2X5” (X = S or Se) are described. Peritectic decompositions occur at 560°C for Ag7AsS6 and 360°C for Ag7AsSe6. Phase changes are observed at 250°C for Ag7AsS6 and 150°C for Ag7AsSe6. For each compound, the low temperature form is cubic P213, and the high temperature form has the Ag8GeTe6 structural type, F43m. The high temperature forms are not quenchable. Ionic and electronic conductivity have been measured in Ag7AsS6 and Ag7AsSe6. Ionic conductivity was measured using RbAg4I5 as a blocking electrode for electronic conduction. Electromotive force measurements confirm transference numbers. At room temperature, ionic conductivities were 1,5.10?6 (Ω.cm)?1 and 0,08 (Ω.cm)?1 for Ag7AsS6 and Ag7AsSe6 respectively.  相似文献   

20.
Six decades of research on ZnO has recently sprouted a new branch in the domain of resistive random access memories. Highly resistive and c-axis oriented ZnO thin films were grown by us using d.c. discharge assisted pulsed laser deposition on Pt/Ti/SiO2/Si substrates at room temperature. The resistive switching characteristics of these films were studied in the top-bottom configuration using current-voltage measurements at room temperature. Reliable and repeated switching of the resistance of ZnO thin films was obtained between two well defined states of high and low resistance with a narrow dispersion and small switching voltages. Resistance ratios of the high resistance state to low resistance state were found to be in the range of 2–5 orders of magnitude up to 20 test cycles. The conduction mechanism was found to be dominated by the Ohmic behaviour in low resistance states, while Poole-Frenkel emission was found to dominate in high resistance state. The achieved characteristics of the resistive switching in ZnO thin films seem to be promising for nonvolatile memory applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号