首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
为了研究水蒸气对于甲烷燃烧微观反应进程的影响,利用Chemkin 17.0研究了水蒸气对甲烷燃烧的绝热火焰温度、预混火焰温度和层流预混火焰燃烧速度的作用规律,研究了水蒸气对甲烷燃烧过程中链式反应进程的影响。结果表明,随着水蒸气摩尔分数的增加,甲烷燃烧火焰温度降低,预混火焰传播速度下降,且火焰中的H、O、OH自由基浓度均下降,但是OH自由基所占的比例增加,导致由OH自由基所传递的反应占主导地位。水蒸气的加入强化了CH3➝CH2(s)➝CH2➝CH➝CH2O过程,同时强化了CH3➝CH3O➝CH2O过程,改变了甲烷燃烧的链式反应。  相似文献   

2.
为了研究非平衡等离子体对甲烷着火延迟时间的影响,在CH4/空气混合气体的基础上分别添加不同浓度的H自由基和OH自由基,利用零维、均质、完全混合模型,对混合气体的点火过程进行数值计算.利用敏感性分析,研究加入非平衡等离子体(H自由基和OH自由基)对CH4/空气混合气着火延迟时间的影响.研究表明:加入一定浓度的H、OH自由...  相似文献   

3.
大加速度场对流预混火焰影响的理论计算   总被引:3,自引:0,他引:3  
建立了大加速度场中的层流预混火焰的一维模型,并应用改进的克莱法就加速度场对层流预混火焰传播速度及火焰面结构的影响以丙烷和空气的预混气为例进行了理论计算通过分析计算讨论了加速度对火焰传播速度,火焰面和密度分布及化学反应速度的影响及产生原因,为大加速度 场中的燃烧试验提供了一定的理论指导。  相似文献   

4.
为提高气体机稀薄燃烧时的燃烧性能,解决天然气发动机在稀薄燃烧情况下点火能量高以及火焰传播速度慢的问题,利用强氧化性的臭氧对燃料进行改质,进而提高天然气燃烧性能。通过Chemkin软件研究臭氧添加对甲烷层流火焰传播速度的影响,并对臭氧助燃的化学机理进行数值分析。试验结果表明:添加臭氧后,层流火焰传播速度增加,在稀薄混合气条件下增加量更明显。在不同温度及压力条件下,掺加臭氧均能增加层流火焰传播速度,最大可增加36%。分析表明:掺加臭氧能明显提升自由基及中间产物的生成量,进而提高甲烷层流火焰传播速度。  相似文献   

5.
大加速度场对层流预混火焰影响的理论计算   总被引:1,自引:0,他引:1  
建立了大加速度场中的层流预混火焰的一维模型,并应用改进的克莱法就加速度场对层流预混火焰传播速度及火焰面结构的影响以丙烷和空气的预混气为例进行了理论计算.通过分析计算结果,讨论了加速度对火焰传播速度、火焰面温度和密度分布及化学反应速率的影响及产生原因,为大加速度场中的燃烧试验提供了一定的理论指导.  相似文献   

6.
正十烷/氢气/空气点火延迟特性数值分析   总被引:3,自引:0,他引:3  
点火延迟时间是燃烧室设计的关键参数,为了揭示氢气对碳氢燃料点火特性的影响,通过CHEMKIN-PRO程序包和两种正十烷燃烧的化学动力学反应机理,计算了正十烷/氢气/空气预混火焰的点火延迟时间,分析了不同含氢比、气体压力和当量比下的点火延迟特性.结果表明:在温度超过临界值T_0时,点火延迟时间随氢气质量比增加而缩短,说明氢气对燃烧反应起到促进作用;当温度低于这个临界值时,氢气对燃烧反应起抑制作用,使得点火延迟时间随氢气质量比增加而延长.  相似文献   

7.
大尺度管道爆炸火焰速度计算模型   总被引:1,自引:0,他引:1  
通过理论分析和实验方法研究了管道内爆炸火焰速度,旨在为预测和评估爆燃火焰速度提供一种基于理论和实验的半经验计算方法.研究表明,火焰速度可以简化为湍流燃烧速度和热膨胀速度叠加的结果,推导出利用压力计算湍流燃烧速度和热膨胀速度的模型,并提出了利用压力、层流燃烧速度、湍流燃烧速度和热膨胀速度计算火焰速度的方法.对贫燃(φ=0.967)和富燃(φ=1.21、1.45)预混气体爆炸实验和计算分析表明,压力沿长径比增大方向呈线性增大;层流燃烧速度以线性关系正比于压力变化,接近化学当量比情况下的变化速率较大,φ=1.21条件下的层流燃烧速度值最大;压力变化和层流燃烧速度增大对湍流燃烧速度的影响不明显,对热膨胀速度的影响显著;压力和层流燃烧速度不是湍流燃烧速度的决定性因素而是热膨胀速度的决定性因素.  相似文献   

8.
通过耦合纯H2和高辛烷值标准基础燃料(primary reference fuel,PRF)燃烧机理,在CHEMKIN的Premix子程序上建立并验证了PRF-H2混合燃料预混层流火焰燃烧模型,并在该模型上就理论当量比条件下,掺氢对高辛烷值燃烧过程的影响进行了计算研究.试验结果表明:H2能加快PRF-H2混合燃料火焰的传播,促进PRF-H2混合燃料中正庚烷和异辛烷的分解;此外,掺入H2还能增大火焰中H、O和OH自由基的摩尔分数,H自由基摩尔分数的最大值由纯PRF混合燃料火焰时的4×10-3增大到了掺氢能量分数为60%时的13×10-3.  相似文献   

9.
为了提高细水雾的抑爆效果,采用定容燃烧弹和点火能精密控制仪,通过改变N2/超细水雾浓度,研究了单一抑制剂和两者共同作用对甲烷/空气爆炸最小点火能、火焰传播行为及不稳定性的影响,并采用化学动力学软件对其抑爆机理进行了探讨.结果表明:加入N2/超细水雾后,甲烷/空气预混气最小点火能显著增大,爆炸超压和最大压升速率降低,压力峰值来临时间和火焰形成时间延长,火焰明显上浮,火焰胞格数量减少,马克斯坦长度增加,降低火焰传播速度的能力显著提高,说明N2/超细水雾共同作用时能更好地抑制甲烷/空气爆炸初期火焰不稳定性,对火焰传播的抑制效果优于单一抑制剂,有效预防火焰加速甚至爆轰.N2/超细水雾可以有效降低H·,O·,·OH等活泼自由基的生成速率峰值和摩尔分数,温度敏感性系数绝对值大幅度降低,说明二者共同作用时能有效降低预混气的爆炸敏感性和爆炸强度,有效抑制甲烷/空气预混气的点燃与爆炸链式反应的进行.  相似文献   

10.
在一个大气压和温度523K条件下,采用圆管法,对甲醇、汽油(70~#)和甲醇/汽油(70~#)(摩尔比1∶1)-空气的层流火焰传播速度进行了测定.实验发现,同等条件下,汽油(70~#)的层流火焰传播速度基本上小于甲醇的层流火焰传播速度;在相当宽的当量比φ值范围内,汽油/甲醇(摩尔比1∶1)-空气的层流火焰传播速度比汽油(70~#)-空气和甲醇-空气的层流火焰传播速度低.  相似文献   

11.
为探究硫化氢(H_2S)在常压范围内对甲烷(CH_4)燃烧特性的影响,采用化学动力学软件CHEMKIN-PRO中的0-D和PFR反应器研究H_2S浓度、过量空气系数、压力和温度对CH_4点火延迟及还原NO的影响,并通过敏感性和生成率分析揭示其化学动力学机理.模拟结果表明:H_2S的存在促进活性基团(H,O,OH,HO_2,HO_2和H_2O_2)的生成速率,从而缩短预混气点火延迟时间,且在低温下的影响作用更加明显;预混气点火延迟时间随着过量空气系数的增大而减小;压力增加亦有利于缩短点火延迟时间. H_2S可降低CH_4/H_2S还原NO的温度,主要由于H_2S降低CH_4的反应温度,使还原性基团CH_i在较低温度下产生;但同时H_2S的存在,在一定程度上降低NO的还原效率,且在贫氧气氛中的影响更为显著.  相似文献   

12.
通过对大加速度场中层流燃烧室流场的数值计算,建立了大加速度场中二维层流燃烧的数学模型,对控制方程组进行离散,采用SIMPLE算法和交错网格设计并调试程序,对丙烷和空气在大加速度场中的预混燃烧过程进行了数值模拟。计算结果表明,沿燃烧室轴线方向的大加速度场确实会对预混火焰的速度场和温度场等产生明显影响。  相似文献   

13.
运用Chemkin程序和GRI-Mech3.0机理,对入射激波诱导下矿井乏风瓦斯点火延迟时间进行数值模拟.首先,根据乏风瓦斯燃烧基元反应敏感性分析,定义CH,峰值出现的时刻为乏风瓦斯的点火延迟时间,然后分别研究瓦斯体积分数、入射激波速度、乏风瓦斯初始温度、初始压力对点火延迟时间的影响.研究结果表明,入射激波速度、乏风瓦斯初始温度、初始压力的增加均会使燃烧温度增加,CH3峰值增加,点火延迟时间缩短,其中入射激波速度的增加缩短点火延迟时间的效果最为显著,乏风瓦斯体积分数变化(0.1%-1.0%)对点火延迟时间的影响较小.  相似文献   

14.
分析了乙醇氧化详细机理,基于详细的乙醇氧化化学反应机理,采用复杂化学动力学反应模型,模拟研究了开放空间中层流预混自由火焰的燃烧问题,并预测了自由火焰温度场、各种组分的浓度场;分析了在预混火焰燃烧过程中复杂化学反应模型的影响.  相似文献   

15.
为深入研究多元混合气体对CH4爆炸的影响和作用机理,选取C2 H6,C2 H4,CO,H2典型可燃气体,采用CHEMKIN软件构建零维封闭均相反应器模型,研究其对CH4爆炸反应过程的影响,模拟分析以CO为主导的混合气体对CH4最大爆炸压力、最大爆炸温度和爆炸过程中关键自由基(H,O,OH)的影响,同时对H+OH自由基最大体积分数变化规律进行分析,并与理论当量状态下各单一气体对CH4爆炸过程的影响规律作对比.结果表明:混合气体的添加对CH4最大爆炸压力和最大爆炸温度有明显促进作用;爆炸过程中H自由基最大体积分数持续增加,O和OH自由基最大体积分数变化与CH4体积分数有关;多元混合气体对CH4的最大爆炸压力和最大爆炸温度影响与单一H2或CO对其影响规律相似,对关键自由基(H,O,OH)的影响规律与CO更为接近.通过敏感性分析获得了影响CH4爆炸过程的关键反应.  相似文献   

16.
为研究新颖环保的材料表面改性技术,通过射频等离子体聚合方法聚合沉积六甲基二硅氧烷(HMDSO)薄膜,并使用发射光谱、红外光谱、扫描电镜、原子力显微镜等测试方法,研究了HMDSO聚合膜的化学结构和物理形貌。实验结果表明,等离子体放电空间内的活性粒子对聚合膜的组成有直接影响。HMDSO等离子体聚合膜中含有Si—O、—CH3、—OH、C O、C—O等官能团,其表面形貌为微米颗粒堆积膜,是一种新颖的聚合物膜。  相似文献   

17.
等离子体制氢技术利用碳氢燃料和空气组成的浓混合气通过电弧放电区域时产生的等离子体中的活性自由基(如O、OH、O3等),引发部分氧化反应,生成富氢气体,它被认为是一种高效低成本的富氢气体或氢气的制造方法.综述了等离子体制氢技术在汽车应用中的发展现状,其中包括等离子体在燃料电池重整制氢装置、传统汽车发动机和车用发动机后处理装置中的应用.对等离子体制氢技术在汽车中的应用优势与不足进行了详尽剖析,提出了应用中需要解决的问题和对策.  相似文献   

18.
针对CO、CH4混合燃料,以层流对冲扩散火焰为对象,利用详细反应机理(GRI-Mech 3.0)模拟计算CO、CH4混合火焰的熄火极限特性,解明了最高火焰温度(也称峰值火焰温度)随拉伸率和CO摩尔分数(αCO)的变化规律,分析了拉伸率和燃料成分的变化对火焰熄火极限的影响,进而着重讨论了造成这种影响的各种因素,以及这些因素在燃烧过程中各自产生的对温度的影响.研究发现:火焰温度随着拉伸率的增长而明显下降;随着αCO的增大,OH的生成速率降低,火焰温度降低,燃烧强度也随之减小.  相似文献   

19.
为探索多孔介质内超绝热燃烧的特性,搭建了自由堆积多孔介质超绝热燃烧试验台架,测量了不同化学当量比(0.4~0.7)的甲烷/空气预混气体的超绝热燃烧特性.自由堆积多孔介质由直径为3和6 mm的Al2O3小球在陶瓷管(Φ38 mm×500 mm)中堆积而成,孔隙率为0.42.试验结果表明,在多孔介质中只有当燃烧波正向传播时才可能产生超绝热燃烧.在贫燃条件下超绝热燃烧的上限化学当量比为0.7,下限化学当量比为0.4;当化学当量比小于0.4或大于0.7时,在贫燃条件下的超绝热燃烧将不能实现.多孔介质中预混燃烧的火焰锋面速度约为7.82 μm/s,最大燃烧锋面温度超过绝热燃烧温度139 K.  相似文献   

20.
利用McKenna型平面火焰燃烧器搭建乙醇喷雾燃烧实验台架,研究富氧条件下乙醇喷雾的燃烧特性.通过数字图像处理技术提取喷雾火焰特征参数和CH*自由基分布特征参数.其中,火焰特征参数包括火焰面积、火焰高度、火焰平均亮度.分析伴流气体O2浓度、伴流气体CO2浓度、乙醇与雾化N2质量流量比对喷雾火焰特性及CH*自由基分布特性的影响.研究表明,在O2浓度为21%~55%时,随着O2浓度的增加,火焰高度和火焰面积均呈降低趋势,而火焰平均亮度呈升高趋势.通过对CH*自由基分布特性的分析发现,O2浓度越高,燃烧反应区域的分布范围越小,反应强度越大.CO2浓度对喷雾火焰尺寸与火焰平均亮度的影响与O2浓度的影响相反,并且CO2浓度对喷雾火焰平均亮度的影响明显大于其对喷雾火焰尺寸的影响.随着乙醇与雾化N2质量流量比的增加,火焰尺寸及燃烧反应强度均呈显著升高趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号