首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

2.
1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.  相似文献   

3.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

4.
Hypocapnia produces cerebral vasoconstriction. The mechanisms involved in hypocapnia-induced elevation of vascular smooth muscle tone remain unclear. We addressed the hypothesis that, in cerebrovascular smooth muscle, increases in extracellular pH (pHo) cause increases in Ins(1,4,5)P3 and cytosolic calcium ([Ca2+]c). Superfused primary cultures of piglet cerebral microvascular smooth muscle cells were exposed to artificial CSF (aCSF) of control (pHo 7. 4, PCO2 36 mm Hg), metabolic alkalosis (pHo 7.7, PCO2 36 mm Hg), or respiratory alkalosis (pHo 7.7, PCO2 19 mm Hg). Intracellular pH (pHi) and [Ca2+]c were measured, using BCECF and fura-2, respectively, with dual wavelength spectroscopy. Ins(1,4,5)P3 was determined by a protein binding assay. Both metabolic and respiratory acidosis treatments increased pHi from the control value of about 7.2 to 7.35. Metabolic and respiratory alkalosis increased Ins(1,4,5)P3, as we showed previously. Metabolic and respiratory alkalosis increased [Ca2+]c about 80% and 110%, respectively. Neither Ins(1,4,5)P3 nor [Ca2+]c increased in cells treated with aCSF that produced control pHo with increased pHi (7.3). In contrast, when pHo increased (7.7), but pHi was maintained at control (7.2), Ins(1,4,5)P3 increased from 123 pmol/well to 307 pmol/well and [Ca2+]c increased 46%. However, the increase of [Ca2+]c was less than with either respiratory or metabolic alkalosis. Thus, hypocapnia-induced cerebral vasoconstriction could involve production of Ins(1,4,5)P3 with resultant elevation in [Ca2+]c. While the Ins(1,4,5)P3 signal appears to be dependent on an increase in extracellular pH, a role for intracellular pH cannot be completely excluded.  相似文献   

5.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

6.
It has been previously reported that parathyroid cells express endothelin (ET) receptors and secrete ET-1 in an extracellular Ca2+ concentration ([Ca2+]e)-dependent manner. Here, we examined the effects of ET-1 on intracellular signaling and parathyroid hormone (PTH) secretion in dispersed bovine parathyroid (bPT) cells, which comprise several cell types including epithelial and endothelial cells, in two cell lines, the rat parathyroid epithelial (PT-r) and the bovine parathyroid endothelial (BPE-1) cells. An RNA-polymerase chain reaction analysis revealed that both ETA and ETB receptors are expressed in bovine parathyroid tissue and BPE-1 cells, and only the ETA receptor is expressed in PT-r cells. PT-r cells also expressed an inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) receptor, and ionomycin induced an increase in the intracellular Ca2+ concentrations ([Ca2+]i) in a Ca(2+)-deficient medium, indicating the presence of an operative intracellular Ca2+ pool in these cells. In cells bathed in 1 mM [Ca2+]e, ET-1 induced a rapid and transient increase in the Ins(1,4,5)P3 production, which was associated with a similar profile of increase in [Ca2+]i and with a peak response of about 800 nM. No changes in the profile of [Ca2+]i responses were observed in ET-1-stimulated cells in the presence of Ca2+ channel blockers, or in Ca(2+)-deficient medium, indicating that Ca2+ mobilization was not associated with Ca2+ entry. Furthermore, a sustained stimulation with ET-1 induced a decrease in [Ca2+]i below the prestimulatory level in a large population of cells, and the percentage of the cell population that shows the sustained decrease of [Ca2+]i increased in higher ET-1 concentrations. [Ca2+]i in PT-r cells was also controlled by a [Ca2+]e-dependent mechanism that changed [Ca2+]i from 28 to 506 nM in a 0.1-3 mM concentration range with an EC50 of 1.2 mM, which is comparable to that reported for bPT cells. In the same range of [Ca2+]e, PTH secretion from bPT cells was inhibited with an IC50 of 1 mM, and ET-1 increased PTH release in a dose-dependent manner but without affecting the IC50 for the [Ca2+]e-dependent inhibition. Thus, the parathyroid epithelial cells appear to respond to ET-1 in a unique way, and the ET autocrine system can be regarded as a possible mechanism to modulate the sensitivity of [Ca2+]e-dependent PTH release.  相似文献   

7.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

8.
1. The operational characteristics of somatostatin (SRIF) sst4 receptors are poorly understood. In this study, we have characterized human recombinant sst4 receptors expressed in CHO cells (CHOsst4) by radioligand binding and microphysiometry. 2. Increasing concentrations SRIF or other SRIF receptor ligands inhibited specific [125I]-Tyr11-SRIF binding in CHOsst4 cell membranes with respective pIC50 values of SRIF (8.82), L-362855 (7.40), BIM-23027 (<5.5) and MK-678 (<5.5). 3. These ligands displayed agonist activity, producing concentration-dependent increases in rates of extracellular acidification (EAR) with pEC50 values of SRIF (9.6) and L-362855 (8.0), respectively. BIM-23027 and MK-678 were at least 1000 times weaker than SRIF. The SRIF maximum was about 40% of that observed with L-362855. 4. In the presence of SRIF (0.1-1 nM), concentration-effect curves to L-362855 were displaced to the right with a progressive reduction in the L-362855 maximum. 5. When cells were only exposed to a single maximally effective concentration of SRIF or L-362855, there was no difference in the magnitude of the agonist-induced increase in EAR. However, a second agonist challenge, 30 min later showed that responses to SRIF but not L-362855 were markedly desensitized. 6. When concentration-effect curves to SRIF and L-362855 were obtained by combining data from cells exposed to only a single agonist concentration, SRIF (pEC50 9.2) was approximately 20 times more potent than L-362855 (pEC50 8.0) but the maxima were the same. Responses to both SRIF and L-362855 were abolished by pertussis toxin. 7. SRIF and L-362855-induced increases in EAR were inhibited by N-ethyl isopropyl amiloride (10 microM) but were not modified by inhibitors of PKC (Go-6976), MAP kinase (PD-98059), tyrosine kinase (genistein) or tyrosine phosphatase (sodium orthovanadate). 8. The results suggest that SRIF-induced increases in EAR in CHOsst4 cells involved activation of the Na+/H+ antiporter and were mediated via Gi/Go G proteins. Responses to SRIF, but not L-362855, were subject to marked desensitization which may be a consequence of differential activation of receptor-effector coupling pathways.  相似文献   

9.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The naturally occurring tetrakisphosphate myo-inositol-1,3,4, 6-tetrakisphosphate [Ins(1,3,4,6)P4] was able to release Ca2+ from the intracellular stores of permeabilized rabbit platelets but was 40-fold less potent than D-myo-inositol-1,4,5-trisphosphate [Ins(1,4,5)P3]. The Ca2+ releasing activity of Ins(1,3,4,6)P4 was rationalized by envisaging two alternative receptor binding orientations in which the vicinal D-1,6-bisphosphate of Ins(1,3,4,6)P4 mimics the D-4,5-bisphosphate in the Ins(1,4,5)P3 binding conformation. This rationalization predicted that Ins(1,4,5)P3 regioisomers [i.e, D-myo-inositol -1,4,6-trisphosphate [D-Ins(1,4,6)P3] and D-myo-inositol-1,3,6 -trisphosphate [D-Ins(1,3,6)P3]] should also possess Ca(2+)-releasing activity. The unambiguous total synthesis of the enatiomers of Ins(1,4,6)P3 [i.e., D-Ins(1,4,6)P3 and D-Ins(3,4,6)P3] and the enatiomers of Ins(1,3,4)P3 [i.e., D-Ins(1,3,6)P3 and D-Ins(1,3,4)P3] allowed an examination of this prediction. D-Ins(1,4,6)P3 released Ca2+ from the intracellular stores of permeabilized platelets and was only 2-3-fold less potent than Ins(1,4,5)P3. D-Ins(1,3,6)P3 [alternative nomenclature, L-Ins(1,3,4)P3] also released Ca2+ but was 12-fold less potent than Ins(1,4,5)P3. Both D-Ins(1,4,6)P3 and D-Ins(1,3,6)P3 displaced specifically bound [3H]Ins(1,4,5)P3 from the Ins(1,4,5)P3 receptor on rat cerebellar membranes. In contrast, however, D-Ins(3,4,6)P3 [alternative nomenclature, L-Ins(1,4,6)P3] and D-Ins(1,3,4)P3 neither possessed Ca(2+)-releasing activity nor displaced [3H]Ins(1,4,5)P3. The ability of D-Ins(1,3,6)P3 to release Ca2+ in permeabilized platelets is in contrast to its apparent lack of Ca(2+)-mobilizing activity previously reported in rat basophilic leukemic cells. The possibility that this is a reflection of the different Ins(1,4,5)P3 receptor subtypes possessed by these two cell types is discussed.  相似文献   

11.
The influence of membrane potential (Vm) on cytoplasmic calcium ([Ca2+]i) oscillations during the sustained extracellular Ca(2+)-dependent phase of the Ca2+ signaling response to gonadotropin-releasing hormone (GnRH) was analyzed in cultured pituitary gonadotrophs. In agonist- and inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3)-stimulated cells, sustained [Ca2+]i oscillations were extinguished by hyperpolarization after 3-15 min despite the availability of Ca2+ in the extracellular medium. Single depolarizing pulses transiently restored the amplitude of the sustained spiking in a dihydropyridine- and extracellular Ca(2+)-sensitive manner. The responses to depolarization showed a marked dependence on Vm that was correlated with the steady-state inward Ca2+ current. In addition, repetitive application of brief depolarizing pulses modulated the frequency of agonist- and Ins(1,4,5)P3-controlled spiking; depolarization pulses at frequencies lower than the intrinsic rate of episodic Ca2+ release triggered large transients between the autonomous spikes, whereas higher frequencies of depolarizing pulses overcame the original Ca2+ spiking frequency. These extrinsically driven and extracellular Ca(2+)-dependent oscillations were sensitive to the Ca(2+)-ATPase blocker, thapsigargin, but not to ryanodine. On the other hand, spontaneous firing and application of depolarizing pulses to nonstimulated cells failed to induce thapsigargin-sensitive oscillations. These findings demonstrate that the pattern of Ca2+ signaling in gonadotrophs does not depend exclusively on the Ins(1,4,5)P3 concentration, but also on the excitable status of the cell. Such modulation of the Ins(1,4,5)P3-controlled Ca2+ signaling system by changes in Vm could provide a mechanism for the integration of multiple inputs that utilize diverse signal transduction pathways.  相似文献   

12.
1. The effects of secreted forms of beta-amyloid-precursor proteins (APP(S)s) on the intracellular Ca2+ concentration ([Ca2+]i) were investigated in rat cultured hippocampal neurones. APP695S, a secretory form of APP695, attenuated the increase in [Ca2+]i evoked by glutamate. In addition, APP695S itself evoked an increase in [Ca2+]i in 1 or 2 day-cultured hippocampal cells, but not in 7 to 13 day-cultured cells. 2. Eighty-one percent of neurones which were immunocytochemically positive for microtubule-associated protein 2 responded to APP695S with an increase in [Ca2+]i. 3. APP695S induced a transient rise in [Ca2+]i even in the absence of extracellular Ca2+ and produced an elevation in inositol-1,4,5-trisphosphate (IP3) in a concentration-dependent manner from 100 to 500 ng ml(-1). In the presence of extracellular Ca2+, APP695S caused a transient rise in [Ca2+]i followed by a sustained phase at high [Ca2+]i, suggesting Ca2+ entry from the extracellular space. 4. The [Ca2+]i elevation was mimicked by amino terminal peptides of APPs, but not by carboxy terminal peptides. 5. These results taken together suggest that APP695S induces an increase in [Ca2+]i in hippocampal neurones through an IP3-dependent mechanism that changes according to the stage of development.  相似文献   

13.
The antitumor sesquiterpene lactone helenalin, which is found in species of the plant genus Helenium, caused a marked potentiation of the increases in intracellular free Ca2+ concentration ([Ca2+]i) produced by mitogens such as vasopressin, bradykinin, and platelet-derived growth factor in Swiss mouse 3T3 fibroblasts. Removing external Ca2+ partly attenuated the increased [Ca2+]i responses caused by helenalin. The increased [Ca2+]i responses occurred at concentrations of helenalin that inhibited cell proliferation. At higher concentrations, helenalin inhibited the [Ca2+]i responses. No change in resting [Ca2+]i was caused by helenalin even at high concentrations. Other helenalin analogues also increased the [Ca2+]i response. Helenalin did not inhibit protein kinase C (PKC) and PKC appeared to play a minor role in the effects of helenalin on [Ca2+]i responses in intact cells. Studies with saponin-permeabilized HT-29 human colon carcinosarcoma cells indicated that helenalin caused an increased accumulation of Ca2+ into nonmitochondrial stores and that the potentiating effect of helenalin on mitogen-stimulated [Ca2+]i responses was due in part to an increase in the inositol-(1,4,5)-trisphosphate-mediated release of Ca2+ from these stores.  相似文献   

14.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

15.
Endothelins (ETs) are 21 amino acid peptides with vasoactive and mitogenic properties. The three isopeptides (ET-1, -2, and -3) and their receptors (E1A and ETB subtypes) display expression in numerous tissues and possibly mediate autocrine/paracrine actions. The present investigation shows that ET-1 triggers biphasic increases of the concentration of cytoplasmic Ca2+ ([Ca2+]i) in pathological human parathyroid cells. Both the peak and sustained [Ca2+]i increase, as well as the proportion of responding cells, are dose-dependent in the 10(-10)-10(-7) mol/L range of ET-1. In absence of external Ca2+, the ET-1-induced [Ca2+]i peak is attenuated. ET-3 has no effect on [Ca2+]i indicating functional dominance of the ETA receptor subtype. ET-1 (10 nmol/L) lowers parathyroid hormone secretion in 0.5 mmol/L but not in higher external Ca2+ concentrations, and parathyroid cell ET release is inhibited by increases of external Ca2+. Fibroblasts overgrowing the parathyroid chief cells during monolayer culture respond to ET-1 with biphasic [Ca2+]i increases or repetitive [Ca2+]i spikes, but show no response to elevation of external Ca2+. These findings imply that ET secretion and ET receptor expression may constitute an autocrine/paracrine mechanism in the regulation of human PTH secretion.  相似文献   

16.
Extracellular adenosine triphosphate (ATP) plays an important role in the regulation of endothelial function. However, its receptors and their signal-transduction pathways in major cerebral arterial endothelial cells are largely unknown. This study was undertaken functionally to classify the P2 purinoceptors in cultured bovine middle cerebral artery endothelial cells by using [Ca2+]i microfluorimetry. The rank order of potency to increase [Ca2+]i was 2-methylthio-ATP approximately ATP approximately uridine triphosphate (UTP) > adenosine diphosphate (ADP) > adenosine monophosphate (AMP) > alpha,beta-methylene-ATP > adenosine, suggesting that the effect was mediated by both P2y and P2u receptors. ATP, 2-methylthio-ATP, and UTP mobilized Ca2+ from intracellular stores and triggered Ca2+ entry. The effects of ATP, 2-methylthio-ATP, and UTP were reduced by phospholipase C inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC), but only the effects of ATP and UTP were attenuated by pertussis toxin, indicating that P2y and P2u receptors may activate the same effector mechanisms by coupling to different G proteins. The [Ca2+]i entry caused by UTP was significantly reduced by the receptor-regulated Ca2+ channel blocker SK&F 96365, by P-450 inhibitor econazole and by inorganic Ca2+ entry blocker lanthanum. P2-receptor antagonists suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and reactive blue 2 reduced the effects of ATP and 2-methylthio-ATP, but not those of UTP, in a concentration-dependent manner. These studies suggest a coexistence of P2y and P2u receptors in cultured bovine middle cerebral artery endothelial cells.  相似文献   

17.
1. We have examined the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) responses in bovine aortic endothelial (BAE) cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. Exchange of medium on BAE cells in the absence of agonist was found to be a stimulus for Ins(1,4,5)P3 generation. BAE cells stimulated with 100 microM ATP, 30 microM 2MeSATP (an agonist at P2Y-purinoceptors but not nucleotide receptors) or 100 microM UTP (an agonist at nucleotide receptors but not P2Y-purinoceptors) gave Ins(1,4,5)P3 responses above that caused by exchange of medium. The time course was rapid, with peak response within the first 5 s and levels returning close to basal after 30 s of stimulation. 3. Significant differences in Ins(1,4,5)P3 responses to 100 microM UTP and 30 microM 2MeSATP stimulation were observed. The response to UTP was reproducibly more sustained than that to 2MeSATP. 4. Stimulation of BAE cells with 100 microM UTP plus 30 microM 2MeSATP produced a response statistically indistinguishable from that predicted by addition of the responses to the two agonists in isolation. 5. The Ins(1,4,5)P3 response to UTP was attenuated to 25% of control by pretreatment of BAE cells with pertussis toxin. Responses to 2MeSATP and ADP were essentially unaffected. ATP stimulation was reduced to 65% of control. 6. Activation of protein kinase C with tetradecanoyl phorbol acetate (TPA) profoundly inhibited Ins(1,4,5)P3 responses to 2MeSATP and ADP but had no effect on UTP stimulation. The protein kinase C inhibitor, Ro 31-8220, enhanced responses to 2MeSATP, ADP and ATP but no effect was observed on UTP stimulation. 7. These observations show that nucleotide and P2Y-receptors mobilise the second messenger Ins(1,4,5)P3 by separate routes resulting in different patterns of generation and suggest that while ATP activates both receptors, ADP principally influences these cells by interacting with the P2Y-purinoceptors.  相似文献   

18.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

19.
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca(2+)-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of -60 mV, the muscarine-induced [Ca2+]i rise, especially its sustained phase, decreased in magnitude. Intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca(2+)-channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

20.
We have measured the [Ca2+] in the endoplasmic reticulum ([Ca2+]er) of intact HeLa cells at both 22 degrees C and 37 degrees C using endoplamsic reticulum-targeted, low Ca2+ affinity aequorin reconstituted with coelenterazine n. Aequorin consumption was much slower at 22 degrees C, and this allowed performing a much longer study of the dynamics of [Ca2+]er. The steady-state [Ca2+]er (500-600 microM) was not modified by the temperature, although both the rates of pumping and leak were decreased at 22 degrees C. The behavior of both [Ca2+]er and cytoplasmic [Ca2+] ([Ca2+]c) after the addition of increasing concentrations of agonists and/or Ca2+-ATPase inhibitors, or following incubation in Ca2+-free medium were compared. We show that agonists induce a fast but relatively small decrease in [Ca2+]er, which is enough to produce a sharp increase in [Ca2+]c. Termination of Ca2+ release is controlled by feedback inhibition of the inositol 1,4,5-trisphosphate receptors by [Ca2+]c, a mechanism that appears to be designed to release the minimum amount of Ca2+ necessary to produced the required [Ca2+]c signal. We also show that Ca2+ release is inhibited progressively when [Ca2+]er decreases below a threshold of about 150 microM, even in the absence of Ca2+ pumping or -Ca2+-c increase. This effect is consistent with a regulation of the inositol 1,4,5-trisphosphate-gated channels by [Ca2+]er.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号