首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Diamond-like carbon (DLC) films were synthesized by RF plasma enhanced chemical vapor deposition and the effects of plasma pre-treatment and post-treatment on the DLC films were investigated. Experimental results show that the surface roughness of the substrate, ranging from 0.2 to 1.2 nm, created by the plasma pre-treatment, will affect the surface roughness of the DLC films deposited using methane as the carbon source. However, the film surface roughness (0.1-0.4 nm) is much smaller than that of the substrate. Raman analysis and hardness measurement by nanoindentation indicate that the structure and the hardness of the DLC films are relatively unchanged for the film surface roughness investigated. For the argon or hydrogen plasma post-treatment of the DLC films deposited using acetylene as the carbon source, it is found that surface roughness decreases with the post-treatment time. Although the hardness decreases after post-treatment, it remains relatively constant with increasing post-treatment time.  相似文献   

2.
C.D. Easton 《Thin solid films》2009,517(15):4402-315
Optically transparent RF plasma polymerised thin films were fabricated from Lavandula angustifolia essential oil under varying RF power levels and their optical properties investigated. The refractive index, extinction coefficient, absorption and optical band gap of the thin films in addition to their thickness and roughness were investigated using the spectroscopic ellipsometry and UV-Vis spectroscopy in the wavelength range 200-1000 nm (6.199-1.239 eV). For films fabricated under the RF power from 10 W to 75 W, the refractive index values vary from 1.530 to 1.543 at 500 nm. Even though the refractive index is unaffected by the RF power, the optical band gap tends to decrease with increasing RF power, with 2.75 at 10 W and 2.34 at 75 W.  相似文献   

3.
This paper aims to investigate the influence of hydrogen on the variation of mechanical properties and microstructure of diamond-like carbon (DLC) films synthesized by radio frequency plasma chemical vapor deposition (r.f.-PECVD). The DLC films were deposited on a silicon substrate (p-type). The reactant gases employed in this paper are a mixture of acetylene and hydrogen. The ratio of hydrogen in the gas mixture was successively varied to clarify its influence on the roughness, thickness, microstructure, hardness, modulus, residual stress and wear depth for the DLC films. The results reveal that increasing the concentration of hydrogen decreases thickness and roughness. Meanwhile, increasing the hydrogen concentration causes the decrease of sp3 ratio, hardness as well as modulus. Finally, wear behavior is correlated to the surface morphology and hydrogen concentration for deposition with hydrogen-containing reactant gas.  相似文献   

4.
Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH 4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13·56 MHz) power. The negative bias voltage was varied from ?60 V to ?150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.  相似文献   

5.
Chemical vapor deposition (CVD) of hard diamond-like carbon (DLC) films on silicon (100) substrates from methane was successfully carried out using a radio frequency (r.f.) inductively coupled plasma source (ICPS). Different deposition parameters such as bias voltage, r.f. power, gas flow and pressure were involved. The structures of the films were characterized by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The hardness of the DLC films was measured by a Knoop microhardness tester. The surface morphology of the films was characterized by atomic force microscope (AFM) and the surface roughness (Ra) was derived from the AFM data. The films are smooth with roughness less than 1.007 nm. Raman spectra shows that the films have typical diamond-like characteristics with a D line peak at 1331 cm−1 and a G line peak at 1544 cm−1, and the low intensity ratio of ID/IG indicate that the DLC films have a high ratio of sp3 to sp2 bonding, which is also in accordance with the results of FTIR spectra. The films hardness can reach approximately 42 GPa at a comparatively low substrate bias voltage, which is much greater than that of DLC films deposited in a conventional r.f. capacitively coupled parallel-plate system. It is suggested that the high plasma density and the suitable deposition environment (such as the amount and ratio of hydrocarbon radicals to atomic or ionic hydrogen) obtained in the ICPS are important for depositing hard and high quality DLC films.  相似文献   

6.
The properties of diamond like carbon (DLC) films grown in modified microwave plasma CVD reactor is presented in this paper. By using bowl shaped steel substrate holder in a MW plasma CVD reactor (without ECR), films have been grown at relatively high pressure (20 Torr) and at low temperature (without heating). The input microwave power was about 300 W. Earlier, under the same growth conditions, no deposition was achieved when flat molybdenum/steel substrate holders were used. In this study, two different designs of bowl shaped steel substrate holder at different bias have been experimented. Raman spectra confirm the DLC characteristics of the films. FTIR results indicate that the carbon is bonded in the sp 3 form with hydrogen, and this characteristic is more pronounced when smaller holder is used. UV-visible spectra show high visible transmittance (~85%) for films grown in both the holders. The nanoindentation hardness of the films have a wide range, about 4–16 GPa. Field emission scanning electron microscope (FESEM) images reveal that the films have featureless and smooth surface morphology. These films are polymeric in nature with moderately high hardness, which may be useful as anti-scratch and anti-corrosive coatings.  相似文献   

7.
Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13·56 MHz rf power. DLC films deposited at three different bias voltages (−60 V, −100 V and −150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at −100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2·16–2·26) as compared to films deposited at −60 V and −150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.  相似文献   

8.
Low refractive index materials which F-doped SiOC:H films were deposited on Si wafer and glass substrate by low temperature plasma enhanced chemical vapor deposition (PECVD) method as a function of rf powers, substrate temperatures, gas flow ratios (SiH4, CF4 and N2O). The refractive index of the F-doped SiOC:H film continuously decreased with increasing deposition temperature and rf power. As the N2O gas flow rate decreases, the refractive index of the deposited films decreased down to 1.378, reaching a minimum value at an rf power of 180 W and 100 °C without flowing N2O gas. The fluorine content of F-doped SiOC:H film increased from 1.9 at.% to 2.4 at.% as the rf power was increased from 60 W to 180 W, which is consistent with the decreasing trend of refractive index. The rms (root-mean-square) surface roughness significantly decreased to 0.6 nm with the optimized process condition without flowing N2O gas.  相似文献   

9.
Indium doped zinc oxide (InZnO) thin films were deposited onto corning glass substrates by RF magnetron sputtering. The dependence of crystal structure, surface morphology, optical properties and electrical conductivity on substrate temperature was investigated using XRD, AFM, UV-vis Spectrophotometer, Fluorescence Spectrophotometer and four-point probe. The films were prepared at different substrate temperatures viz, room temperature (RT), 473 K and 673 K at RF power 200 W. All the films showed preferred orientation along (002) direction. Crystallite size increased from 14 to 19 nm as the substrate temperature was increased to 473 K. With increase in substrate temperature the crystallites did not show any further growth. AFM analysis showed that the rms roughness value decreased from 60 nm to 23 nm when the substrate temperature was increased to 673 K. Optical measurements revealed maximum band gap and minimum refractive index for the film prepared at 473 K. A strong correlation between the band gap variation and the strain developed at different substrate temperatures is established.  相似文献   

10.
In this work, amorphous carbon thin films for hard mask applications were deposited by a reactive particle beam (RPB) assisted sputtering system at room temperature. The deposition characteristics of the films were investigated as functions of operating parameters such as reflector bias voltage and RF plasma power. By spectroscopic ellipsometry, the decrease in the refractive index of films at the wavelengths of 633 and 248 nm was observed with the increasing plasma power. In Raman spectra, the positions of G line shifted to higher wavenumbers with increasing plasma power. When the reflector bias voltage increases, the deposition rate was increased but the positions of G line remained nearly unchanged.  相似文献   

11.
Diamond-like carbon (DLC) films were synthesized by RF plasma enhanced chemical vapor deposition using acetylene as the carbon source and the effects of acetylene/nitrogen ratio in the reaction atmosphere, deposition pressure, and plasma post-treatment using different atmospheres on the surface roughness and mechanical properties of DLC films were investigated. Although the surface roughness, characterized by AFM, decreased as the acetylene/nitrogen ratio in the reaction atmosphere decreased, the hardness of DLC films measured by nanoindentation also decreased with the decrease of the acetylene/nitrogen ratio, which is consistent with the Raman results of the ID/IG ratio. Rougher films with higher residual stress were obtained when using a deposition pressure higher than 40.0 Pa (0.3 torr). For the effect of plasma post-treatment using different atmospheres, surface smoothing was found for the hydrogen plasma post-treatment, whereas nitrogen and argon plasma post-treatments resulted in surface roughening. Hydrogen plasma post-treatment was found to lower the surface roughness without significantly sacrificing the hardness.  相似文献   

12.
The plasma assisted atomic layer deposition (ALD) of tantalum nitride (TaN) thin films were conducted using tert-butylimino-tris-ethylmethylamino tantalum (TBTEMAT) and hydrogen plasma at 250 degrees C. The effects of H2-plasma pulse time and RF power on the film properties, such as resistivity, surface roughness, step coverage and stability in air, were examined. The film growth rate (thickness/cycle) was in the range of 0.05-0.08 nm/cycle and the resistivity of the films varied from 490 to 70,000 microomega cm, depending on the plasma conditions. Longer plasma pulse times and increasing RF power yielded films of lower resistivity along with improving the stability. The films were smooth and the conformality of the films deposited in 0.28 microm holes with an aspect ratio of 7:1 was 100%.  相似文献   

13.
Erbium doped amorphous alumina thin films were fabricated using Co-sputtering technique in various depositions runs with varying parameters for optimizing the deposition parameters to obtain the films with best optical performance. The main subject of investigation includes the effects of change in various deposition parameters such as substrate heating, radio frequency (RF) power and oxygen pressure inside the chamber while deposition. High quality as-deposited films with various Er concentrations and low carbon content have been confirmed by XPS. Substrate heating ∼500 °C was found to be very effective in getting highly dense films with high refractive index of 1.70 at 1530–1570 nm emission band. The Er3+-doped films showed very intense near-infrared luminescence peak at 1550 nm even without any post-deposition annealing treatment.  相似文献   

14.
微波ECR—CVD低温SiNx薄膜的氢含量分析   总被引:1,自引:0,他引:1  
叶超  宁兆元 《功能材料》1998,29(1):89-91
利用红外光谱技术研究了微波电子回旋共振(ECR)等离子体化学气相沉积(CVD)法在低温条件下制备的SiN。膜的键的结构和氢含量,分析了微波 功率和后处理条件对膜含量的影响及其成因,提出适当提高微波功率是降低微波ECR-CVD低温SiNx膜中氢含量的可能途径。  相似文献   

15.
以SiC陶瓷靶为靶材,Ar和CHF_3为源气体,采用反应磁控溅射法在双面抛光的316L不锈钢基片上制备出了系列Si和F共掺杂的DLC∶F∶Si薄膜。研究了射频输入功率对薄膜的附着力、硬度和表面接触角的影响。结果表明,选取适当的输入功率(180W左右)可以制备出附着力达11N的DLC∶F∶Si薄膜。通过拉曼和红外光谱分析以及样品粗糙度分析,作者提出了输入功率对DLC∶F∶Si薄膜结构和特性调制的机理,即输入功率直接影响SiC靶的溅射产额、空间Ar~+的能量以及CHF_3的分解程度,继而影响空间Si、C、-CF、-CF_2,特别是F~*等基团的能量和浓度,调制薄膜中F含量以及Si-C键含量和C网络的关联度。Si-C、C=C键的增加有助于薄膜附着力的明显改善,F含量的减少则会导致薄膜的疏水性能有所下降。  相似文献   

16.
The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.  相似文献   

17.
射频磁控溅射制备类金刚石薄膜的特性   总被引:1,自引:2,他引:1  
采用射频磁控溅射技术,用高纯石墨靶在单晶硅片、抛光不锈钢片上制备了类金刚石薄膜(DLC)。采用Raman光谱、原子力显微镜、显微硬度分析仪,表征了类金刚石薄膜的微观结构、表面形貌、硬度。结果表明,制备的类金刚石薄膜中含sp2、sp3杂化碳键,具有典型的类金刚石结构特征。计算表明,对应sp3杂化碳原子含量的ID1IG为3.18;薄膜的表面十分平整光滑,表面粗糙度极低,平均粗糙度Ra为0.17 nm;薄膜硬度可以高达30.8 GPa。  相似文献   

18.
Diamond-like carbon (DLC) films were prepared for a protective coating on nitinol substrate by hybrid ion beam deposition technique with an acetelene as a source of hydrocarbon ions. An amorphous silicon (a-Si) interlayer was deposited on the substrates to ensure better adhesion of the DLC films followed by Ar ion beam treatment. The film thickness increased with increase in ion gun anode voltage. The residual stresses in the DLC films decreased with increase in ion gun anode voltage and film thickness, while the stress values were independent of the radio frequency (RF) bias voltage. The adhesion of the DLC film was improved by surface treatment with argon ion beam for longer time and by increasing the thickness of a-Si interlayer.  相似文献   

19.
Amorphous hydrogenated silicon oxocarbonitride (SiCNO:H) films have been deposited by plasma‐assisted chemical vapour deposition (PACVD) using bis(trimethylsilyl)carbodiimide (BTSC) as a single source precursor in a argon (Ar) radio‐frequency plasma. In this work the SiCNO:H films deposited at different deposition temperatures were studied in terms of deposition rate, refractive index, surface roughness, microstructure, and chemical composition including bonding state. The results showed that a higher deposition temperature enhanced the formation of Si‐N bonds, and disfavoured the formation of N=C=N, Si‐NCN, C‐H and Si‐CH3 bonds. A higher deposition temperature also decreased the deposition rate and increased the refractive index of the resulting SiCNO:H film. With increasing temperature a denser film was formed, indicating a change of the deposition mechanism, i.e., transformation from particle precipitation to heterogeneous surface reaction. Except for the coatings deposited at room temperature, the surface of the films was smooth with a roughness of around 4 nm at the centre in the range of 5 μm x 5 μm area. Moreover, the films contained 8 ~ 16 at.% oxygen bonded to Si, which originated from the remnant H2O in the deposition chamber.  相似文献   

20.
利用电子回旋共振等离子体化学气相沉积(ECR—CVD)技术,以SiH4和N2为反应气体进行了氮化硅钝化薄膜的低温沉积技术的研究。采用原子力显微镜、傅立叶变换红外光谱和椭圆偏振光检测等技术对薄膜的表面形貌、结构、厚度和折射率等性质进行了测量。结果表明,采用ECR—CVD技术能够在较低的衬底温度条件下以较高的沉积速率制备厚度均匀的氮化硅薄膜,薄膜中H含量很低。薄膜沉积速率随微波功率和混合气体中硅烷比例的增加而增大。折射率随微波功率的增大而减小,随混合气体中硅炕比例的增大而增大。在相同气体混合比和微波功率条件下,较高衬底温度条件下制备的薄膜折射率较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号