首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
张霄汉  陈小平  李嘉玲  李响 《机器人》2006,28(4):415-421
提出了一种基于视觉的步行机器人自定位系统.该系统基于Monte Carlo定位方法,分别利用了人工地标和自然地标的高噪声的传感器信息,结合无反馈的里程计信息来完成自身定位.本系统对于自然地标的不唯一性做了特殊处理,融合多标志物的信息,并提出新的计算权重和样本重采样方法,以适应动态不确定的环境.在真实机器人上的实验结果表明,在高噪声的信息输入下,能够获得实时、准确、稳定的定位结果,能有效解决“绑架的机器人”问题.  相似文献   

2.
Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a variety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior. A popular approach to overcome this problem and to achieve accurate localization is to use artificial landmarks. In this paper, we consider the problem of optimally placing such artificial landmarks for mobile robots that repeatedly have to carry out certain navigation tasks. Our method aims at finding the minimum number of landmarks for which a bound on the maximum deviation of the robot from its desired trajectory can be guaranteed with high confidence. The proposed approach incrementally places landmarks utilizing linearized versions of the system dynamics of the robot, thus allowing for an efficient computation of the deviation guarantee. We evaluate our approach in extensive experiments carried out both in simulations and with real robots. The experiments demonstrate that our method outperforms other approaches and is suitable for long-term operation of mobile robots.  相似文献   

3.
This paper describes an efficient and robust localization system for indoor mobile robots and AGVs. The system utilizes a sensor that measures bearings to artificial landmarks, and an efficient triangulation method. We present a calibration method for the system components and overcome typical problems for sensors of the mentioned type, which are localization in motion and incorrect identification of landmarks. The resulting localization system was tested on a mobile robot. It consumes less than 4% of a Pentium4 3.2 GHz processing power while providing an accurate and reliable localization result every 0.5 s. The system was successfully incorporated within a real mobile robot system which performs many other computational tasks in parallel.  相似文献   

4.
一种基于视觉的移动机器人定位系统   总被引:12,自引:0,他引:12       下载免费PDF全文
具有自主的全局定位能力是自主式稳定机器人传感器系统的一项重要功能,为了实现这个目的,国内外均在不断地研究发展各种定位传感器系统,这里介绍了一种采用光学蝗全方位位置传感器系统,该传感器系统由主动式路标、视觉传感器、图象采集与数据处理系统组成,其视觉传感器和数据处理系统可安装在移动机器人上,然后可通过观测路标物「视角定位的方法,计算出机器人在世界坐标系中的位置和方向,实验证明,该系统可以只的在线定位,  相似文献   

5.
移动机器人的一种室内自然路标定位法   总被引:3,自引:0,他引:3  
实时定位是移动机器人导航的一个基本前提。该文提出了一种利用墙棱边及墙平面(EdgeandPlane,EP)路标或者广义EP路标进行定位的方法,使用了异步数据融合的方法对移动机器人进行了定位。仅利用传感器对墙平面的距离数据进行测量就实现了机器人的定位。仿真显示这些方法能减少机器人的定位时间,提高对传感器测量数据的利用效率。  相似文献   

6.
Successful approaches to the robot localization problem include particle filters, which estimate non-parametric localization belief distributions. Particle filters are successful at tracking a robot’s pose, although they fare poorly at determining the robot’s global pose. The global localization problem has been addressed for robots that sense unambiguous visual landmarks with sensor resetting, by performing sensor-based resampling when the robot is lost. Unfortunately, for robots that make sparse, ambiguous and noisy observations, standard sensor resetting places new pose hypotheses across a wide region, in poses that may be inconsistent with previous observations. We introduce multi-observation sensor resetting (MOSR) to address the localization problem with sparse, ambiguous and noisy observations. MOSR merges observations from multiple frames to generate new hypotheses more effectively. We demonstrate experimentally on the NAO humanoid robots that MOSR converges more efficiently to the robot’s true pose than standard sensor resetting, and is more robust to systematic vision errors.  相似文献   

7.
In this paper, we focus on the problem of having a multitude of very simple mobile robots self-organize their relative positions so as to obtain a variety of spatial configurations. The problem has a variety of applications in mobile robotics, modular robots, sensor networks, and computational self-assembly. The approach we investigate in this paper attempts at minimizing the local capability of robots and at verifying how and to what extent a variety of global shapes can be obtained by exploiting simple self-organizing algorithms and emergent behaviors. Several experiments are reported showing the effectiveness of the approach.  相似文献   

8.
针对里程计在定位过程中存在累积误差的问题,建立了一种通用的移动机器人里程计误差模型,对里程计误差进行实时反馈补偿.在利用激光雷达进行环境特征提取过程中,根据激光雷达原始数据存在的误差,建立了激光雷达的观测误差模型,并根据环境特征和机器人的相对位置关系,建立了移动机器人观测模型.最后,结合里程计和激光雷达误差模型,利用扩展卡尔曼滤波(EKF)实现了基于环境特征跟踪的移动机器人定位.实验结果验证了里程计和激光雷达误差模型的引入,在增加较短定位时间的情况下,可以有效地提高移动机器人的定位精度.  相似文献   

9.
Wireless sensor networks (WSN) have great potential in ubiquitous computing. However, the severe resource constraints of WSN rule out the use of many existing networking protocols and require careful design of systems that prioritizes energy conservation over performance optimization. A key infrastructural problem in WSN is localization—the problem of determining the geographical locations of nodes. WSN typically have some nodes called seeds that know their locations using global positioning systems or other means. Non-seed nodes compute their locations by exchanging messages with nodes within their radio range. Several algorithms have been proposed for localization in different scenarios. Algorithms have been designed for networks in which each node has ranging capabilities, i.e., can estimate distances to its neighbours. Other algorithms have been proposed for networks in which no node has such capabilities. Some algorithms only work when nodes are static. Some other algorithms are designed specifically for networks in which all nodes are mobile. We propose a very general, fully distributed localization algorithm called range-based Monte Carlo boxed (RMCB) for WSN. RMCB allows nodes to be static or mobile and that can work with nodes that can perform ranging as well as with nodes that lack ranging capabilities. RMCB uses a small fraction of seeds. It makes use of the received signal strength measurements that are available from the sensor hardware. We use RMCB to investigate the question: “When does range-based localization work better than range-free localization?” We demonstrate using empirical signal strength data from sensor hardware (Texas Instruments EZ430-RF2500) and simulations that RMCB outperforms a very good range-free algorithm called weighted Monte Carlo localization (WMCL) in terms of localization error in a number of scenarios and has a similar computational complexity to WMCL. We also implement WMCL and RMCB on sensor hardware and demonstrate that it outperforms WMCL. The performance of RMCB depends critically on the quality of range estimation. We describe the limitations of our range estimation approach and provide guidelines on when range-based localization is preferable.  相似文献   

10.
基于全景视觉的移动机器人同步定位与地图创建研究   总被引:8,自引:0,他引:8  
提出了一种基于全景视觉的移动机器人同步定位与地图创建(Omni-vSLAM)方法.该方法提取 颜色区域作为视觉路标;在分析全景视觉成像原理和定位不确定性的基础上建立起系统的观测模型,定位出 路标位置,进而通过扩展卡尔曼滤波算法(EKF)同步更新机器人位置和地图信息.实验结果证明了该方法在 建立环境地图的同时可以有效地修正由里程计造成的累积定位误差.  相似文献   

11.
To fully utilize the information from the sensors of mobile robot, this paper proposes a new sensor‐fusion technique where the sample data set obtained at a previous instant is properly transformed and fused with the current data sets to produce a reliable estimate for navigation control. Exploration of an unknown environment is an important task for the new generation of mobile service robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar‐sensing system or the visual‐sensing system. Notice that in the conventional fusion schemes, the measurement is dependent on the current data sets only. Therefore, more sensors are required to measure a given physical parameter or to improve the reliability of the measurement. However, in this approach, instead of adding more sensors to the system, the temporal sequences of the data sets are stored and utilized for the purpose. The basic principle is illustrated by examples and the effectiveness is proved through simulations and experiments. The newly proposed STSF (space and time sensor fusion) scheme is applied to the navigation of a mobile robot in an environment using landmarks, and the experimental results demonstrate the effective performance of the system. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
Learning to select distinctive landmarks for mobile robot navigation   总被引:1,自引:0,他引:1  
In landmark-based navigation systems for mobile robots, sensory perceptions (e.g., laser or sonar scans) are used to identify the robot’s current location or to construct internal representations, maps, of the robot’s environment. Being based on an external frame of reference (which is not subject to incorrigible drift errors such as those occurring in odometry-based systems), landmark-based robot navigation systems are now widely used in mobile robot applications.The problem that has attracted most attention to date in landmark-based navigation research is the question of how to deal with perceptual aliasing, i.e., perceptual ambiguities. In contrast, what constitutes a good landmark, or how to select landmarks for mapping, is still an open research topic. The usual method of landmark selection is to map perceptions at regular intervals, which has the drawback of being inefficient and possibly missing ‘good’ landmarks that lie between sampling points.In this paper, we present an automatic landmark selection algorithm that allows a mobile robot to select conspicuous landmarks from a continuous stream of sensory perceptions, without any pre-installed knowledge or human intervention during the selection process. This algorithm can be used to make mapping mechanisms more efficient and reliable. Experimental results obtained with two different mobile robots in a range of environments are presented and analysed.  相似文献   

13.
Selecting Landmarks for Localization in Natural Terrain   总被引:1,自引:0,他引:1  
We describe techniques to optimally select landmarks for performing mobile robot localization by matching terrain maps. The method is based upon a maximum-likelihood robot localization algorithm that efficiently searches the space of possible robot positions. We use a sensor error model to estimate a probability distribution over the terrain expected to be seen from the current robot position. The estimated distribution is compared to a previously generated map of the terrain and the optimal landmark is selected by minimizing the predicted uncertainty in the localization. This approach has been applied to the generation of a sensor uncertainty field that can be used to plan a robot's movements. Experiments indicate that landmark selection improves not only the localization uncertainty, but also the likelihood of success. Examples of landmark selection are given using real and synthetic data.  相似文献   

14.
The localization problem is important in mobile robots and wireless sensor network and has been studied for many years. Among many localization methods, the hop-count based approach is simple and scalable; however, the localization accuracy is not satisfactory if the node density is low. To solve this problem, in this paper a multi-robot approach is proposed to utilize the cooperation and mobility of the robots to improve the node distribution (density), thus enhancing the hop-count based localization. By an auction-based task allocation scheme, the robots can negotiate with the static sensor nodes and then select the most suitable robots to move to the area of sparse node density, thus increasing the localization accuracy for the static sensor nodes. On the other hand, the robots also can localize themselves with the help of the static sensor nodes. The efficacy of this approach is shown by simulation.  相似文献   

15.
Extended Kalman filter (EKF) has been a popular choice to solve simultaneous localization and mapping (SLAM) problems for mobile robots or vehicles. However, the performance of the EKF depends on the correct a priori knowledge of process and sensor/measurement noise covariance matrices (Q and R, respectively). Imprecise knowledge of these statistics can cause significant degradation in performance. The present paper proposes the development of a new neurofuzzy based adaptive Kalman filtering algorithm for simultaneous localization and mapping of mobile robots or vehicles, which attempts to estimate the elements of the R matrix of the EKF algorithm, at each sampling instant when a ldquomeasurement updaterdquo step is carried out. The neuro-fuzzy based supervision for the EKF algorithm is carried out with the aim of reducing the mismatch between the theoretical and the actual covariance of the innovation sequences. The free parameters of the neuro-fuzzy system are learned offline, by employing particle swarm optimization in the training phase, which configures the training problem as a high-dimensional stochastic optimization problem. By employing a mobile robot to localize and simultaneously acquire the map of the environment, under several benchmark environment situations with varying landmarks and under several conditions of wrong knowledge of sensor statistics, the performance of the proposed scheme has been evaluated. It has been successfully demonstrated that in each case, the neuro-fuzzy assistance is able to improve highly unpredictable, degrading performance of the EKF and can provide robust and accurate solutions.  相似文献   

16.
In this paper, we demonstrate a reliable and robust system for localization of mobile robots in indoors environments which are relatively consistent to a priori known maps. Through the use of an Extended Kalman Filter combining dead-reckoning, ultrasonic, and infrared sensor data, estimation of the position and orientation of the robot is achieved. Based on a thresholding approach, unexpected obstacles can be detected and their motion predicted. Experimental results from implementation on our mobile robot, Nomad-200, are also presented.  相似文献   

17.
Recent developments in sensor technology have made it feasible to use mobile robots in several fields, but robots still lack the ability to accurately sense the environment. A major challenge to the widespread deployment of mobile robots is the ability to function autonomously, learning useful models of environmental features, recognizing environmental changes, and adapting the learned models in response to such changes. This article focuses on such learning and adaptation in the context of color segmentation on mobile robots in the presence of illumination changes. The main contribution of this article is a survey of vision algorithms that are potentially applicable to color-based mobile robot vision. We therefore look at algorithms for color segmentation, color learning and illumination invariance on mobile robot platforms, including approaches that tackle just the underlying vision problems. Furthermore, we investigate how the inter-dependencies between these modules and high-level action planning can be exploited to achieve autonomous learning and adaptation. The goal is to determine the suitability of the state-of-the-art vision algorithms for mobile robot domains, and to identify the challenges that still need to be addressed to enable mobile robots to learn and adapt models for color, so as to operate autonomously in natural conditions.  相似文献   

18.
基于激光雷达的大型移动平台定位   总被引:1,自引:0,他引:1  
针对自身不带位置传感器的大型移动平台,设计了一个基于激光雷达的定位系统.所述定位系统利用激光雷达提取外部环境中的线段特征和路标特征,通过扩展卡尔曼滤波算法,对移动平台进行运动预测和位姿修正,从而完成移动平台的定位过程.通过大量实验验证了系统的定位精度和可靠性.  相似文献   

19.
基于机器人群的主动传感器网络自组织的运动规划   总被引:1,自引:0,他引:1  
主动传感器网络的自组织通常要求移动节点群(机器人群)通过障碍物环境移动到指定地点后, 重新调整并按预定布局组网. 在网络的自组织过程中要保证每个移动节点(机器人)与整个网络之间的连通性. 在对移动机器人的保持连通性进行优化的基础上, 提出了单步位置预测与群体势场相结合的分布式运动规划方法进行主动传感器网络的部署和重置, 证明了机器人运动控制的稳定性和网络的连通性保持, 进行了有和无障碍物环境下超过40个机器人的仿真, 结果表明该方法适用于大规模的主动传感器网络重置, 并对不同规模的网络具有可扩展性.  相似文献   

20.
In this work, we examine the classic problem of robot navigation via visual simultaneous localization and mapping (SLAM), but introducing the concept of dual optical and thermal (cross-spectral) sensing with the addition of sensor handover from one to the other. In our approach we use a novel combination of two primary sensors: co-registered optical and thermal cameras. Mobile robot navigation is driven by two simultaneous camera images from the environment over which feature points are extracted and matched between successive frames. A bearing-only visual SLAM approach is then implemented using successive feature point observations to identify and track environment landmarks using an extended Kalman filter (EKF). Six-degree-of-freedom mobile robot and environment landmark positions are managed by the EKF approach illustrated using optical, thermal and combined optical/thermal features in addition to handover from one sensor to another. Sensor handover is primarily targeted at a continuous SLAM operation during varying illumination conditions (e.g., changing from night to day). The final methodology is tested in outdoor environments with variation in the light conditions and robot trajectories producing results that illustrate that the additional use of a thermal sensor improves the accuracy of landmark detection and that the sensor handover is viable for solving the SLAM problem using this sensor combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号