首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
物理冶金多晶硅太阳电池叠层钝化减反射结构模拟   总被引:2,自引:0,他引:2  
采用PC1D模拟软件对p型物理冶金多晶硅太阳电池的SiO2/Si Nx/SiNx叠层钝化减反射结构进行了计算模拟。结果表明:在SiNx/Si Nx双层减反射结构中引入SiO2钝化层后可以明显改善电池的外量子效率与表面减反射效果,并最终提高电池转换效率;随着SiO2膜厚度的增加,电池表面反射率呈先降低后增加的趋势,而电池外量子效率及转换效率则呈现出相反的趋势。二氧化硅膜厚度在2~8 nm时,电池转换效率变化不大,并在6 nm时效率达到最大值18.04%,当二氧化硅膜厚度大于8 nm后电池转换效率会出现明显下降。  相似文献   

2.
研究了Si掺杂对MOCVD生长的(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱发光性能的影响.样品分为两类:一类只生长了(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱结构;另一类为完整的多量子阱LED结构.对于只生长了(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱结构的样品,掺Si没有改变量子阱发光波长,但使得量子阱发光强度略有下降,发光峰半高宽明显增大.这应是掺Si使量子阱界面质量变差导致的.而在完整LED结构的情况下,掺Si却大大提高了量子阱的发光强度.相对于未掺杂多量子阱LED结构,垒层掺Si使多量子阱的发光强度提高了13倍,阱层和垒层均掺Si使多量子阱的发光强度提高了28倍,并对这一现象进行了讨论.  相似文献   

3.
王安祥  张晓军  李继军 《红外与激光工程》2018,47(6):621003-0621003(8)
在考虑折射率色散效应基础上,以加权平均反射率作为评价函数,通过智能优化算法对空间硅太阳电池减反射膜进行优化设计,得到了最佳的膜厚参数,并与不考虑色散下设计的减反射膜进行了比较。对MgF2/TiO2,SiO2/TiO2双层减反射膜,与不考虑色散情形相比,考虑色散下优化后的最小加权平均反射率分别减小了36.6%和37.6%;对具有厚度为15 nm的SiO2钝化层的硅太阳电池的MgF2/TiO2,SiO2/TiO2减反射膜重新优化设计,与不考虑色散情形相比,考虑色散下优化后的最小加权平均反射率分别减小了43.9%和33.7%;对具有不同厚度钝化层的空间硅太阳电池,在考虑色散下进行了减反射膜的优化设计。结果发现,随着钝化层厚度的增加,所得减反射膜的最小加权平均反射率也随之增大,减反射效果越来越弱。最后,在考虑与未考虑色散情形下,将钝化层膜厚也作为反演参量后重新设计。结果表明:在色散情形下所设计的减反射膜更佳,对于MgF2/TiO2/SiO2(钝化层)膜系,最佳膜厚参量为d1(MgF2)=97.6 nm,d2(TiO2)=40.2 nm,d3(SiO2)=4.9 nm;对于SiO2/TiO2/SiO2(钝化层),最佳膜厚参量为d1(SiO2)=85.1 nm,d2(TiO2)=43.4 nm,d3(SiO2)=1.8 nm。  相似文献   

4.
该文采用SilvacoTCAD软件模拟了双结GaSb/Ga0.84In0.16As0.14Sb0.86热光伏电池的特性,通过改变顶层电池和底层电池的厚度和浓度来调节电池的电流,当顶层P层的厚度为1μm,N层的厚度为3μm,底层P层的厚度为3.6μm,N层的厚度为3.9μm时,电流得到了匹配。  相似文献   

5.
提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点。实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高, Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层。由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究。  相似文献   

6.
提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点.实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高,Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层.由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究.  相似文献   

7.
MOCVD生长的InGaN薄膜的离子束背散射沟道及其光致发光   总被引:1,自引:0,他引:1  
采用 MOCVD技术以 Al2 O3为衬底在 Ga N膜上生长了 In Ga N薄膜 .以卢瑟福背散射 /沟道 (RBS/Channeling)技术和光致发光 (PL )技术对 Inx Ga1 - x N / Ga N / Al2 O3样品进行了测试 ,获得了合金层的组分、厚度、元素随深度分布、结晶品质及发光性能等信息 .研究表明生长温度和 TMIn/ TEGa比对 In Ga N薄膜的 In组分和生长速率影响很大 .在一定范围内 ,降低 TMIn/ TEGa比 ,In Ga N膜的生长速率增大 ,合金的 In组分反而提高 .降低生长温度 ,In Ga N膜的 In组分提高 ,但生长速率基本不变 . In Ga N薄膜的结晶品质随 In组分的增大而显著下降 ,In Ga N薄膜  相似文献   

8.
研究了Si掺杂对MOCVD生长的(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱发光性能的影响.样品分为两类:一类只生长了(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱结构;另一类为完整的多量子阱LED结构.对于只生长了(Al0.3Ga0.7)In0.5P/Ga0.5In0.5P多量子阱结构的样品,掺Si没有改变量子阱发光波长,但使得量子阱发光强度略有下降,发光峰半高宽明显增大.这应是掺Si使量子阱界面质量变差导致的.而在完整LED结构的情况下,掺Si却大大提高了量子阱的发光强度.相对于未掺杂多量子阱LED结构,垒层掺Si使多量子阱的发光强度提高了13倍,阱层和垒层均掺Si使多量子阱的发光强度提高了28倍,并对这一现象进行了讨论.  相似文献   

9.
磁控溅射制备Ga2O3/ITO深紫外透明导电膜的光电性能   总被引:2,自引:2,他引:0  
刘建军  闫金良  石亮  李厅 《半导体学报》2010,31(10):103001-5
采用磁控溅射方法在石英玻璃基底上制备了Ga2O3/ITO膜,用紫外-可见分光光度计、四探针测试仪对ITO膜和 Ga2O3/ITO膜的光学透过率和面电阻进行了表征,详细研究了ITO层和Ga2O3层的厚度对Ga2O3/ITO双层膜光电性能的影响。研究表明,Ga2O3(50nm) /ITO(23nm)膜在280nm处的深紫外光学透过率高达77.6%,面电阻为323Ω/sq;ITO层控制Ga2O3/ITO膜的面电阻,影响Ga2O3/ITO膜的紫外透过率;Ga2O3层厚度调控Ga2O3/ITO膜的紫外区域的光谱形状。  相似文献   

10.
用磁控溅射法在室温条件下制备了Al膜、Ga2O3膜及Ga2O3/Al/Ga2O3三层膜,对其光学和电学性能进行了表征。单层Al膜厚度大于7nm时,光学透射率在近紫外光区域大于可见光区域;Ga2O3膜在深紫外光区域(<300nm)透明,光学带隙4.96eV;Ga2O3/Al/Ga2O3三层膜透射率截止波长在245nm左右,随着顶层Ga2O3厚度增加,电导率减小,紫外光透射率峰位、吸收边、截止波长红移,透射率峰值先稍微增加,然后逐渐降低。顶层Ga2O3厚度为34nm时,Ga2O3/Al/Ga2O3三层膜在275nm处的透射率达70%,电导率为3346S.cm–1。  相似文献   

11.
The optimization of a SiO2/TiO2,SiO2/ZnS double layer antireflection coating(ARC)on Ga0.5In0.5P/In0.02Ga0.98As/Ge solar cells for terrestrial application is discussed.The Al0.5In0.5P window layer thickness is also taken into consideration.It is shown that the optimal parameters of double layer ARC vary with the thickness of the window layer.  相似文献   

12.
In order to reduce the noise and carrier–donor scattering and thereby increase the carrier mobility of the pseudomorphic AlGaAs/InGaAs high electron mobility transistors (pHEMTs), we have grown Al0.25Ga0.75As/In0.15Ga0.85As/In0.3Ga0.7As/GaAs pHEMTs with varied In0.3Ga0.7As thickness, and studied the effects of the In0.3Ga0.7As thickness on the electron mobility and sheet density by Hall measurements and photoluminescence measurements. We calculated the electron and hole subbands and obtained good agreement between calculated and measured PL energies. It was found that the additional In0.3Ga0.7As layer could be used to reduce the carrier–donor scattering, but due to the increased interface roughness as the In0.3Ga0.7As layer becomes thicker, the interface scattering reduced the electron mobility. An optimal thickness of the In0.3Ga0.7As was found to be 2 nm.  相似文献   

13.
Digital alloying using molecular beam epitaxy (MBE) was investigated to produce AlGaInP quaternary alloys for bandgap engineering useful in 600-nm band optoelectronic device applications. Alternating Ga0.51In0.49P/Al0.51In0.49P periodic layers ranging from 4.4 monolayers (ML) to 22.4 ML were used to generate 4,000-Å-thick (Al0.5Ga0.5)0.51In0.49P quaternary materials to understand material properties as a function of constituent superlattice layer thickness. High-resolution x-ray diffraction (XRD) analysis exhibited fine satellite peaks for all the samples confirming that digitally-alloyed (Al0.5Ga0.5)0.51In0.49P preserved high structural quality consistent with cross-sectional transmission electron microscopy (X-TEM) images. Low-temperature photoluminescence (PL) measurements showing a wide span of luminescence energies ~ 170 meV can be obtained from a set of identical composition digitally-alloyed (Al0.5Ga0.5)0.51In0.49P with different superlattice periods, indicating the bandgap tunability of this approach and its viability for III-P optoelectronic devices grown by MBE.  相似文献   

14.
Photocurrent anisotropy of long-range ordered Ga0.5In0.5P alloys has been sys-tematically investigated. The ordered Ga0.5In0.5P is a compositional modulated superlattice of Ga0.5+η/2In0.5-η/2P and Ga0.5-η/2In0.5+η/2P monolayer planes, where η is a long-range order parameter. The photocurrent edge of the [110] polarization is lower than that of the . The observed anisotropy in the photocurrent spectra is due to a crystal-field splitting at the valence-band maximum in ordered Ga0.5In0.5P. The anisotropy shows a continous variation as a function of η. In order to make clear the effects of the valence-band splitting on the polarized photocurrent spectra, we performed theoretical calculations in which a distribu-tion of η in the epitaxial film and an order-parameter dependence of oscillator strength were considered. From these calculations, it is found that oscillator strength is a key parameter in the anisotropic character. The calculated results moderately agree with the measured data. Furthermore, the epitaxial thickness dependence of the anisotropic character in photocurrent was investigated.  相似文献   

15.
It is shown that the ground state transition energy in quantum dots in heterostructures grown by atmospheric-pressure MOCVD can be tuned in the range covering both transparence windows of the optical fiber at wavelengths of 1.3 and 1.55 μm by varying the thickness and composition of the thin GaAs/InxGa1−x As double cladding layer. These structures also exhibit a red shift of the ground state transition energy of the InxGa1−x As quantum well (QW) as a result of the formation of a hybrid QW InxGa1−x As/InAs (wetting layer) between the quantum dots (QDs). The Schottky diodes based on these structures are characterized by an increased reverse current, which is attributed to thermally activated tunneling of electrons from the metal contact to QD levels. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 448–454. Original Russian Text Copyright ? 2004 by Karpovich, Zvonkov, Levichev, Baidus, Tikhov, Filatov, Gorshkov, Ermakov.  相似文献   

16.
The dependence of the impurity-free interdiffusion process on the properties of the dielectric cap layer has been studied, for both unstrained GaAs/AlxGa1−xAs and pseudomorphic Iny Ga1−yAs/GaAs MQW structures grown by molecular beam epitaxy. The influence of the cap layer thickness, composition, and deposition technique on the degree of interdiffusion were all systematically investigated. Electron-beam evaporated SiO2 films of varying thickness, chemical-vapor-deposited SiOxNy films of varying composition, and spin-on SiO2 films were used as cap layers during rapid thermal annealing (850-950°C). Photoluminescence at 10K has been employed to determine the interdiffusioninduced bandgap shifts and to calculate the corresponding Al-Ga and In-Ga interdiffusion coefficients. The latter were found to increase with the cap layer thickness (e-beam SiO2) up to a limit determined by saturation of the outdiffused Ga concentration in the SiO2 caps. A maximum concentration of [Ga] = 4–7 ×1019 cm−3 in the SiO2 caps was determined using secondary ion mass spectroscopy profiling. Larger band-edge shifts are also obtained when the oxygen content of SiOxNy cap layers is increased, although the differences are not sufficiently large for a laterally selective interdiffusion process based on variations in cap layer composition alone. Much larger differences are obtained by using different deposition techniques for the cap layers, indicating that the porosity of the cap layer is a much more important parameter than the film composition for the realization of a laterally selective interdiffusion process. For the calculated In0.2Ga0.8As/GaAs interdiffusion coefficients, activation energies EA and prefactors Do were estimated to ranging from 3.04 to 4.74 eV and 5 × Kh−3 to 2 × 105 cm2/s, respectively, dependent on the cap layer deposition technique and the depth of the MQW from the sample surface.  相似文献   

17.
In these experiments impurity-induced layer disordering (IILD) utilizing chemical reduction of SiO2 by Al (from Al0.8Ga0.2As) is employed to generate Si and O to effect layer disordering. The SiO2-Al0.8Ga0.2As reaction is studied with respect to annealing ambient. By controlling the extent of disordering via As4 overpressure, closely spaced (∼1μm) Si-O IILD buried heterostructure lasers can be optically coupled or uncoupled. Direct observation of O incorporation into the buried layers is shown using secondary ion mass spectroscopy (SIMS). The thermal stability of separate-confinement AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure (QWH) laser crystals is investigated using SIMS, transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The data show that the thermal stability of a strained-layer In0.1Ga0.9As quantum well (QW) is strongly dependent upon: (1) the layer thickness and heterointerfaces of the AlyGa1−yAs-GaAs waveguide layers located directly above and below the QW, (2) the type of surface encapsulant employed, and (3) the annealing ambient. Narrow single-stripe (<2μm) lasers fabricated via Si-O diffusion and layer disordering exhibit low threshold currents (Ith ∼ 4 mA) and differential quantum efficiencies,η, of 22% per facet under continuous (cw) room-temperature operation.  相似文献   

18.
Multi-junction solar cells (SC) made from III–V compound semiconductors are still in the development phase. Here, we perform calculations for multi-junction cells: AlxGa1−xAs top junction, GaAs middle junction and InyGa1−yAs bottom junction (all of these materials with band-gaps between 2.1 and 0.8 eV) in order to obtain the optimal band gap and thickness for each junction under the AM1.5 solar radiation spectrum. The ideal photo-current density is around 15.5 mA/cm2. In order to reduce the natural reflectivity, an anti-reflective coating (ARC) was chosen, based on a MgF2/ZnS double layer, allowing for a significant increase of the current density with respect to a cell without it. Calculations of external quantum efficiency (QE) were also performed for the three cases mentioned above: ideal one, taking into account the total reflection and with the ARC double layer. Finally, when more realistic calculations are done, taking into account the carrier recombination at each sub-cell, and the light reflection for a tandem cell with the designed ARC on top, the expected conversion efficiency (η), under the AM 1.5 spectrum (without concentration), was determined to be around 38.5%, making this an attractive III–V compound tandem cell to be investigated in the near future.  相似文献   

19.
《Microelectronics Journal》2007,38(6-7):767-770
The influence of Si doping on the photoluminescence (PL) properties of (Al0.3Ga0.7)0.5In0.5P/Ga0.5In0.5P multiple-quantum-wells (MQWs) was studied. For the samples without p-type layers, the PL peak wavelength from (Al0.3Ga0.7)0.5In0.5P/Ga0.5In0.5P MQWs did not vary when Si was doped in MQWs, the PL peak intensity did not change obviously and the PL FWHM broadened. We consider that Si doping results in worse interface quality of (Al0.3Ga0.7)0.5In0.5P/Ga0.5In0.5P MQWs. However, for the full light-emitting diode (LED) structure samples, the PL intensity of MQWs obviously increased when Si was doped in MQWs. The PL intensity from MQWs with Si-doped barriers was about 13 times stronger than that of undoped MQWs. The PL intensity from MQWs with Si-doped barriers and wells was strong as 28 times as that of undoped MQWs. The reasons are discussed.  相似文献   

20.
III–V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III–V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III–V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III–V single-junction solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号