首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abnormal grain growth of β-Si3N4 was observed in a 70% Si3N4–30% barium aluminum silicate (70%-Si3N4–30%-BAS) self-reinforced composite that was pressureless-sintered at 1930°C; Si3N4 starting powders with a wide particle-size distribution were used. The addition of coarse Si3N4 powder encouraged the abnormal growth of β-Si3N4 grains, which allowed microstructural modification through control of the content and size distribution of β-Si3N4 nuclei. The mechanical response of different microstructures was characterized in terms of flexural strength, as well as indentation fracture resistance, at room temperature. The presence of even a small amount of abnormally grown β-Si3N4 grains improved the fracture toughness and minimized the variability in flexural strength.  相似文献   

2.
This paper reports the texturing behavior of β-sialon by strong magnetic field alignment (SMFA) during slip casting, followed by reaction pressureless sintering, using either α or β-Si3N4, Al2O3, and AlN as the starting materials. It is found that the β-Si3N4 crystal exhibits a substantially stronger orientation ability than the α-Si3N4 crystal regardless of the Si3N4 raw powders in the magnetic field of 12 T. The β-raw powder produces a highly a , b -axis-oriented β-Si3N4 green body with a Lotgering orientation factor of up to 0.97. During sintering, the β-raw powder allows the a , b -axis-oriented β-sialon to retain the Lotgering orientation factor similar to and even higher than that of β-Si3N4 in the green body. In contrast, the α-raw powder leads to a faster transformation rate of α/β-Si3N4 to β-sialon but a substantially lower texture in β-sialon. The results indicate that the use of the β-raw powder is more efficient for producing highly textured β-sialon via SMFA than that of the α-raw powder as well as the prolonged sintering.  相似文献   

3.
4.
A microstructure that consisted of uniformly distributed, elongated β-Si3N4 grains, equiaxed β-SiC grains, and an amorphous grain-boundary phase was developed by using β-SiC and alpha-Si3N4 powders. By hot pressing, elongated β-Si3N4 grains were grown via alpha right arrow β phase transformation and equiaxed β-SiC grains were formed because of inhibited grain growth. The strength and fracture toughness of SiC have been improved by adding Si3N4 particles, because of the reduced defect size and the enhanced bridging and crack deflection by the elongated β-Si3N4 grains. Typical flexural-strength and fracture-toughness values of SiC-35-wt%-Si3N4 composites were 1020 MPa and 5.1 MPam1/2, respectively.  相似文献   

5.
We present processing (green and sintered), part shrinkage and warping, microstructural characterization, and mechanical properties of Si3N4 made by fused deposition of ceramics (FDC), using optical microscopy, scanning electron microscopy, and X-ray diffraction. The mechanical properties (fracture strength, fracture toughness, and Weibull modulus) are also reported. Proper FDC build parameters resulted in dense, homogeneous, near-net-shape Si3N4, with microstructures and mechanical properties similar to conventionally processed material. Mechanical properties are shown to be isotropic, while there is some degree of microstructural texturing (preferred β-Si3N4 grain orientation) in sintered components.  相似文献   

6.
Silicon nitride–silicon oxynitride (Si3N4–Si2N2O) in situ composites have been fabricated via either the annealing or the superplastic deformation of sintered Si3N4 that has been doped with a silica-containing additive. In this study, quantitative texture measurements, including pole figures and X-ray diffraction patterns, are used in conjunction with scanning electron microscopy and transmission electron microscopy techniques to examine the degree of preferred orientation and texture-development mechanisms in these materials. The results indicate that (i) only superplastic deformation can produce strong textures in the β-Si3N4 matrix, as well as Si2N2O grains that are formed in situ ; (ii) texture development in the β-Si3N4 matrix mainly results from grain rotation via grain-boundary sliding; and (iii) for Si2N2O, a very strong strain-dependent texture occurs in two stages, namely, preferred nucleation and anisotropic grain growth.  相似文献   

7.
Plasma etching of β-Si3N4, α-sialon/β-Si3N4 and α-sialon ceramics were performed with hydrogen glow plasma at 600°C for 10 h. The preferential etching of β-Si3N4 grains was observed. The etching rate of α-sialon grains and of the grain-boundary glassy phase was distinctly lower than that of β-Si3N4 grains. The size, shape, and distribution of β-Si3N4 grains in the α-sialon/β-Si3N4 composite ceramics were revealed by the present method.  相似文献   

8.
α/β-Si3N4 composites with various α/β phase ratios were prepared by hot pressing at 1600°–1650°C with MgSiN2 as sintering additives. An excellent combination of mechanical properties (Vickers indentation hardness of 23.1 GPa, fracture strength of about 1000MPa, and toughness of 6.3 MPa·m1/2) could be obtained. Compared with conventional Si3N4-based ceramics, this new material has obvious advantages. It is as hard as typical in-situ-reinforced α-Sialon, but much stronger than the latter (700 MPa). It has comparable fracture strength and toughness, but is much harder than β-Si3N4 ceramics (16 GPa). The microstructures and mechanical properties can be tailored by choosing the additive and controlling the heating schedule.  相似文献   

9.
Gas-pressure sintering of α-Si3N4 was carried out at 1850 ° to 2000°C in 980-kPa N2. The diameters and aspect ratios of hexagonal grains in the sintered materials were measured on polished and etched surfaces. The materials have a bimodal distribution of grain diameters. The average aspect ratio in the materials from α-Si3N4 powder was similar to that in the materials from β-Si3N4 powder. The aspect ratio of large and elongated grains was larger than that of the average for all grains. The development of elongated grains was related to the formation of large nuclei during the α-to-β phase transformation. The fracture toughness of gaspressure-sintered materials was not related to the α content in the starting powder or the aspect ratio of the grains, but to the diameter of the large grains. Crack bridging was the main toughening mechanism in gas-pressure-sintered Si3N4 ceramics.  相似文献   

10.
β-Si3N4 powder containing 1 mol% of equimolar Y2O3–Nd2O3 was gas-pressure sintered at 2000°C for 2 h (SN2), 4 h (SN4), and 8 h (SN8) in 30-MPa nitrogen gas. These materials had a microstructure of " in-situ composites" as a result of exaggerated grain growth of some β Si3N4 grains during firing. Growth of elongated grains was controlled by the sintering time, so that the desired microstructures were obtained. SN2 had a Weibull modulus as high as 53 because of the uniform size and spatial distribution of its large grains. SN4 had a fracture toughness of 10.3 MPa-m1/2 because of toughening provided by the bridging of elongated grains, whereas SN8 showed a lower fracture toughness, possibly caused by extensive microcracking resulting from excessively large grains. Gas-pressure sintering of β-Si3N4 powder was shown to be effective in fostering selective grain growth for obtaining the desired composite microstructure.  相似文献   

11.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

12.
Porous silicon nitride (Si3N4) ceramics with about 50% porosity were fabricated by pressureless sintering of α-Si3N4 powder with 5 wt% sintering additive. Four types of sintering aids were chosen to study their effect on the microstructure and mechanical properties of porous Si3N4 ceramics. XRD analysis proved the complete formation of a single β-Si3N4 phase. Microstructural evolution and mechanical properties were dependent mostly on the type of sintering additive. SEM analysis revealed the resultant porous Si3N4 ceramics as having high aspect ratio, a rod-like microstructure, and a uniform pore structure. The sintered sample with Lu2O3 sintering additive, having a porosity of about 50%, showed a high flexural strength of 188 MPa, a high fracture toughness of 3.1 MPa·m1/2, due to fine β-Si3N4 grains, and some large elongated grains.  相似文献   

13.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

14.
Microstructures of Si3N4-TiN composites prepared by chemical vapor deposition (CVD) were investigated by the multibeam imaging technique using a 1 MV electron microscope. High-resolution images showed a number of fibrous TIN crystallites dispersed in the matrix of CVD β-Si3N4. Crystallographic orientation relations between β-Si3N4 and TiN were determined directly from the observed images in the subcell scale. The fibrous axis of TiN is parallel to the (110) direction of the NaCl structure and lies along the c axis of the hexagonal β-Si3N4 crystal. Domain boundaries, planar faults, nonplanar faults, and dislocations were found in the CVD β-Si3N4 matrix near the TiN crystallites. The origin of the structure defects is briefly discussed in connection with the formation of TiN crystallites in the matrix.  相似文献   

15.
Processing Strategy for Producing Highly Anisotropic Silicon Nitride   总被引:4,自引:0,他引:4  
Silicon nitride with a preferred orientation of large elongated grains was obtained by tape casting of raw powder slurry seeded with rodlike β-Si3N4 particles, followed by a gas pressure sintering under 1 MPa nitrogen pressure. The large elongated grains developed from seeds lay in planes parallel to the casting direction in a two-dimensional distribution. Increased fracture toughness (11.1 MPa·m1/2) and bending strength (1100 MPa) were achieved in the direction perpendicular to the grains alignment compared to specimens with a random distribution of elongated grains. Morover, the specimens exhibited a high Weibull modulus of 46 due to the uniform distribution of large grains.  相似文献   

16.
Composites containing 30 vol%β-Si3N4 whiskers in a Si3N4 matrix were fabricated by hot-pressing. The composites exhibited fracture toughness values between 7.6 and 8.6 MPa · m1/2, compared to 4.0 MPa · m1/2 for unreinforced polycrystalline Si3N4. The improvements in fracture toughness were attributed to crack wake effects, i.e., whisker bridging and pullout mechanisms.  相似文献   

17.
Shock Synthesis of Cubic Silicon Nitride   总被引:2,自引:0,他引:2  
The phase transitions of α-Si3N4 and β-Si3N4 have been investigated by shock compression through the recovery technique and Hugoniot measurements. α- and β-Si3N4 are transformed into a cubic spinel structure ( c -Si3N4). The yield of c -Si3N4 increases with increasing shock pressure and reaches 100% at 63 GPa. The shock-synthesized c -Si3N4 powders are nanocrystals and display a high-temperature metastability up to about 1620 K. c -Si3N4 is one of the hard materials based on the measured equation of state. c -Si3N4 powders have been characterized by electron microscopy and 29Si magic angle spinning NMR spectroscopy. The purification and separation method has been developed to obtain pure c -Si3N4 powders.  相似文献   

18.
First-principles molecular orbital calculations are performed by the discrete variational Xalpha method using model clusters of rare-earth-doped β-Si3N4 and the interface between prismatic planes of β-Si3N4 and intergranular glassy films. On the basis of the total overlap population of each cluster, the rare-earth ions are implied to be stable in the grain-boundary model, while they are not stable in the bulk model. These results are consistent with experimental observations showing significant segregation of Ln3+ ions at the grain boundary and no solubility of Ln3+ into bulk β-Si3N4. Grain-boundary bonding is weakened with an increase of the ionic radius of the rare-earth ions, which provides a reasonable explanation for the ionic size dependence of the crack propagation behaviors as well as the growth rate of the prismatic plane in the rare-earth-doped β-Si3N4 during liquid-phase sintering.  相似文献   

19.
Starting from Si powder, NaN3 and different additives such as N -aminothiourea, iodine, or both, Si3N4 nanomaterials were synthesized through the nitridation of silicon powder in autoclaves at 60°–190°C. As the additive was only N -aminothiourea, β-Si3N4 nanorods and α-Si3N4 nanoparticles were prepared at 170°C. If the additive was only iodine, α-Si3N4 dendrites with β-Si3N4 nanorods were obtained at 190°C. However, when both N -aminothiourea and iodine were added to the system of Si and NaN3, the products composed of β-Si3N4 nanorods and α, β-Si3N4 nanoparticles could be prepared at 60°C.  相似文献   

20.
The microstructure, crystal structure, and chemical composition of reaction-sintered Si3N4 containing iron were studied using conventional and scanning transmission electron microscopy. It was found that the grains of β -Si3N4 were large and blocklike with well-developed facets, a series of voids along some grain boundaries, a subgrain of iron silicide near the periphery, and penetration of iron silicide into the three-grain junctions and grain boundaries. At some distance from each β -Si3N4 grain was a region of small α-Si3N4 grains, with no evidence of iron silicide. Between this region and the β -Si3N4 grain was a zone containing both α- and β -Si3N4 and iron silicide. These observations suggest that the large β -Si3N4 grains grow in liquid iron silicide, that the smaller α-Si3N4 grains grow from the vapor, and that the latter are converted to the β form by solution in, and reprecipitation from, liquid iron silicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号