首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, thermodynamics was applied to investigate the glycerol autothermal reforming to generate hydrogen for fuel cell application. Equilibrium calculations employing the Gibbs free energy minimization were performed in a wide range of temperature (700–1000 K), steam to glycerol ratio (1–12) and oxygen to glycerol ratio (0.0–3.0). Results show that the most favorable conditions for hydrogen production are achieved with the temperatures, steam to glycerol ratios and oxygen to glycerol ratios of 900–1000 K, 9–12 and 0.0–0.4, respectively. Further, it is demonstrated that thermoneutral conditions (steam to glycerol ratio 9–12) can be obtained at oxygen to glycerol ratios of around 0.36 (at 900 K) and 0.38–0.39 (at 1000 K). Under these thermoneutral conditions, the maximum number of moles of hydrogen produced are 5.62 (900 K) and 5.43 (1000 K) with a steam to glycerol ratio of 12. Also, it should be noted that methane and carbon formation can be effectively eliminated.  相似文献   

2.
Hydrogen can be produced by steam reforming, partial oxidation, autothermal, or aqueous-phase reforming processes using various noble metal based catalysts, but also by supercritical water (SCW) reforming. Using AspenPlus™, a systematic thermodynamic analysis of glycerol reforming using supercritical water has been carried out by the total Gibbs free energy minimization method, which computes the equilibrium composition of synthesis gas (syngas). The predictive Soave-Redlich-Kwong equation of state (EOS) has been used as thermodynamic method in the simulation of the supercritical region, after evaluating it against other EOS methods. A sensitivity analysis has been conducted on supercritical water reforming of pure and pretreated crude glycerol, as obtained from biodiesel production. The effect of the main operating parameters (temperature, concentration of glycerol feed, glycerol purity in the feed of crude glycerol, and pressure) aimed to the hydrogen production has been investigated in the reforming process, by obtaining the mole fraction and molar flow-rate of components in syngas, as well as the hydrogen yield. Selectivity to the different compounds has been also calculated. By this way, the thermodynamic favorable operating conditions at which glycerol may be converted into hydrogen by SCW reforming have been identified. The simulation results agree well with some few experimental data from the literature. This study is the first of a series addressed to glycerol reforming using SCW.  相似文献   

3.
This study presents a thermodynamic analysis of hydrogen production from an autothermal reforming of crude glycerol derived from a biodiesel production process. As a composition of crude glycerol depends on feedstock and processes used in biodiesel production, a mixture of glycerol and methanol, major components in crude glycerol, at different ratios was used to investigate its effect on the autothermal reforming process. Equilibrium compositions of reforming gas obtained were determined as a function of temperature, steam to crude glycerol ratio, and oxygen to crude glycerol ratio. The results showed that at isothermal condition, raising operating temperature increases hydrogen yield, whereas increasing steam to crude glycerol and oxygen to crude glycerol ratios causes a reduction of hydrogen concentration. However, high temperature operation also promotes CO formation which would hinder the performance of low-temperature fuel cells. The steam to crude glycerol ratio is a key factor to reduce the extent of CO but a dilution effect of steam should be considered if reforming gas is fed to fuel cells. An increase in the ratio of glycerol to methanol in crude glycerol can increase the amount of hydrogen produced. In addition, an optimal operating condition of glycerol autothermal reforming at a thermoneutral condition that no external heat to sustain the reformer operation is required, was investigated.  相似文献   

4.
Ethanol steam reforming (ESR) is a strong endothermic reaction and ideally it only produces hydrogen and carbon dioxide.  相似文献   

5.
On the basis of the Gibbs free energy minimization principle, the dry autothermal reforming performance of crude glycerol in situ hydrogen separation is investigated via thermodynamic analysis. The impact of hydrogen separation fraction on gas composition in product, carbon formation and reaction heat is studied. It can be found that the hydrogen separation promotes the hydrogen production and hinders methane formation. The hydrogen removal is selective to the reduction of carbon deposition, which improves the carbon formation at a low feed CO2 to glycerol molar ratio and the impact is reverse for high feed CO2 to glycerol molar ratio. When the reaction temperature varies from 850 K to 900 K, the required oxygen to glycerol molar ratio of thermal neutral condition is obviously increased from 0.15 to 0.4 with hydrogen removal. Meanwhile, the glycerol impurities evaluation indicates that the syngas yield is significantly reduced with the increase of the glycerol impurities. At a high temperature, the hydrogen removal is in favor of the achievement of autothermal process.  相似文献   

6.
As a continuation of a previous work, a conceptual design is proposed for reforming glycerol using supercritical water to produce maximum electrical power in an energy self-sufficient system. The scheme of the process is simulated after discussing some routes to achieve the aim. The selected way takes advantage of the huge pressure energy of reformate products just at the outlet of the reforming process. The expanded product gas is used as a fuel gas to provide the thermal energy required by the reforming process. The evaluation of the thermodynamic performance of the process is carried out by an energy and exergy analysis. As relevant outputs measurements of the process performance, the net work and exergetic efficiencies as well as the mole fraction and molar flow-rates of hydrogen obtained. Glycerol feed concentration in aqueous solution at which no external heat source is needed was obtained, both for pure and pretreated crude glycerol, at 800 °C and 240 atm. The effect of the main operating parameters has been investigated by sensitivity analysis to identify optimal conditions that maximize power production. In the exergy analysis, the thermodynamic efficiencies used for the overall process and for its individual units are suitably discussed. The computation has been made with the aid of AspenPlus™, using the predictive Soave-Redlich-Kwong equation of state as thermodynamic method in the simulation of the supercritical region. The next study in this series of glycerol reforming using SCW will aim to maximize hydrogen production, including the syngas purification, to generate electricity via fuel cells.  相似文献   

7.
The catalytic performance of nickel catalysts supported on La2O3, α-Al2O3, γ-Al2O3, ZrO2, and YSZ for supercritical water reforming of glycerol was investigated. Experiments were conducted in a tubular reactor made of Inconel-625 with the temperature range of 723–848 K under a pressure of 25 MPa. Carbon formation causing operation failure was observed for α-Al2O3, γ-Al2O3 and ZrO2 at temperatures higher than 748, 798 and 823 K, respectively. Ni/La2O3 exhibited the highest H2 yield where almost complete conversion was obtained at 798 K. Moderate space velocities (WHSV = 6.45 h−1) and glycerol feed concentration (5wt.%) favor high hydrogen selectivity and yield. Methanation is favored at a low WHSV or high glycerol feed concentration, resulting in a lower H2 yield. Increasing Ni loading on the Ni/La2O3 catalyst strongly promoted the reforming, water–gas shift, and methanation reactions, which contributed significantly to the product species distribution.  相似文献   

8.
Glycerol reforming under catalytic supercritical water at temperatures in the range of 723–848 K using Co catalyst deposited on various supports including ZrO2, yttria-stabilized zirconia (YSZ), La2O3, γ-Al2O3, and α-Al2O3 was investigated. An increase in operating temperature promoted the continued increase in glycerol conversion; however, carbon formation causing system operation failure was observed for γ-Al2O3 and α-Al2O3 at high operating temperatures (i.e. 748–798 K). Co supported on YSZ provided the most efficient performance for hydrogen production. 10 wt.% Co loading on YSZ support was an optimum amount to enhance the reaction. The increase in glycerol conversion and reduction of the amount of liquid products were observed for lower weight hourly space velocity (WHSV), higher operating temperature or higher cobalt loading. On Co/YSZ catalyst, glycerol conversion of 0.94 and hydrogen yield of 3.72 was obtained with WHSV of 6.45 h−1at 773 K.  相似文献   

9.
In this study, techno-economic comparison of three different biodiesel production scenarios integrated with glycerol supercritical water reforming (SCWR) process to produce electricity is conducted. In the first scenario, biodiesel is synthesized from acid-pretreated waste cooking oil (WCO) in the presence of alkali catalyst. In the second scenario, biodiesel is obtained from WCO by acid catalyst. In the third scenario, biodiesel is derived from WCO using acid catalyst, followed by hexane extraction of the produced methyl esters. The glycerol evolved from all the above-mentioned pathways is then subjected to the SCWR process in order to produce hydrogen. The produced hydrogen is then combusted to provide thermal energy required by biodiesel production and purification processes as well as to generate electricity. All the developed scenarios are modeled and simulated in Aspen HYSYS software environment. In order to simplify the simulation process, canola-based WCO is considered as triolein with 6 wt% oleic acid (free fatty acid) and, accordingly, the prepared biodiesel is taken into account as methyl oleate. In order to compare the economic profitability of the developed approaches, several economic indicators including net present value (NPV), internal rate of return (IRR), payback period (PBP), discounted payback period (DPBP), and return on investment (ROI) are used. A sensitivity analysis is also carried out to show how variations in feedstock, biodiesel, and electricity prices can affect the NPV of the developed scenarios. According to the results obtained, the highest IRR and ROI values as decision-making parameters are obtained for the first scenario, manifesting its suitability from the techno-economic viewpoint. The economic indicators of the second scenario are also acceptable and very close to the first approach. Overall, upgrading glycerol into hydrogen using SCWR process appears to be an attractive strategy for enhancing the economic viability of biodiesel production plants.  相似文献   

10.
Glycerol, as a main by-product of biodiesel synthesis, can be used in a large variety of applications including food, personal care, pharmaceutical and chemical industries However, due to the large production of biodiesel, the glycerol market was depressed. The conversion of glycerol into an energy carrier (syngas or hydrogen) could be a very interesting route to providing value as a renewable energy source. The reforming of glycerol leads to an almost complete conversion and very high carbon-to-gas efficiency with short residence time.In this work, the performances of packed bed reactor for hydrogen production from glycerol in supercritical conditions, by using a Ni-based catalyst supported on Al2O3 and SiO2, through CFD modelling in three-dimensions were studied. The parameters of kinetic model were determined by using an optimization method to fit the experimental data. The developed model was been validated based on experimental results published in literature for three different feed concentration of glycerol of 5, 10 and 20 wt% (R2 = 0.969).Varying the reaction temperature, between 500 and 800 °C, and residence time, between 1.5 and 10 s, the concentration of hydrogen increased with increasing the temperature and decreasing the residence time. At high temperature, the hydrogen can achieve a concentration of 65% and the present of methane is less than 5% and carbon monoxide maintain lower concentration. The simulation results show that high hydrogen yield can be obtained in short residence time with conversion of glycerol almost completed.  相似文献   

11.
From a technical and economic point of view, autothermal steam reforming offers many advantages, as it minimizes heat load demand in the reformer. Bio-oil, the liquid product of biomass pyrolysis, can be effectively converted to a hydrogen-rich stream. Autothermal steam reforming of selected compounds of bio-oil was investigated using thermodynamic analysis. Equilibrium calculations employing Gibbs free energy minimization were performed for acetic acid, acetone and ethylene glycol in a broad range of temperature (400–1300 K), steam to fuel ratio (1–9) and pressure (1–20 atm) values. The optimal O2/fuel ratio to achieve thermoneutral conditions was calculated under all operating conditions. Hydrogen-rich gas is produced at temperatures higher than 700 K with the maximum yield attained at 900 K. The ratio of steam to fuel and the pressure determine to a great extent the equilibrium hydrogen concentration. The heat demand of the reformer, as expressed by the required amount of oxygen, varies with temperature, steam to fuel ratio and pressure, as well as the type of oxygenate compound used. When the required oxygen enters the system at the reforming temperature, autothermal steam reforming results in hydrogen yield around 20% lower than the yield by steam reforming because part of the organic feed is consumed in the combustion reaction. Autothermicity was also calculated for the whole cycle, including preheating of the organic feed to the reactor temperature and the reforming reaction itself. The oxygen demand in such a case is much higher, while the amount of hydrogen produced is drastically reduced.  相似文献   

12.
A pathway for hydrogen production from supercritical water reforming of glycerol integrated with in situ CO2 removal was proposed and analyzed. The thermodynamic analysis carried out by the minimizing Gibbs free energy method of three glycerol reforming processes for hydrogen production was investigated in terms of equilibrium compositions and energy consumption using AspenPlus™ simulator. The effect of operating condition, i.e., temperature, pressure, steam to glycerol (S/G) ratio, calcium oxide to glycerol (CaO/G) ratio, air to glycerol (A/G) ratio, and nickel oxide to glycerol (NiO/G) ratio on the hydrogen production was investigated. The optimum operating conditions under maximum H2 production were predicted at 450 °C (only steam reforming), 400 °C (for autothermal reforming and chemical looping reforming), 240 atm, S/G ratio of 40, CaO/G ratio of 2.5, A/G ratio of 1 (for autothermal reforming), and NiO/G ratio of 1 (for chemical looping reforming). Compared to three reforming processes, the steam reforming obtained the highest hydrogen purity and yield. Moreover, it was found that only autothermal reforming and chemical looping reforming were possible to operate under the thermal self-sufficient condition, which the hydrogen purity of chemical looping reforming (92.14%) was higher than that of autothermal reforming (52.98%). Under both the maximum H2 production and thermal self-sufficient conditions, the amount of CO was found below 50 ppm for all reforming processes.  相似文献   

13.
A detailed exergy analysis was performed for the steam reforming process of glycerol by means of a series of experiments in a bench scale apparatus. The reforming was conducted in a fixed bed reactor, which operated in heat recovery mode by extracting the demanded energy from hot exhaust gases provided by a diesel engine. In order to determine the role of the main operational parameters into the exergy efficiency of the studied process, the experiments were carried out with glycerol feed concentrations in water ranging from 10% up to 90% weight, whereas the outlet reactor temperature was varied from 600 °C up to 800 °C. Detailed exergy balances revealed a compromise between the exergy destruction within the reforming reactor and liquid separator versus the exergy losses associated to the tar and char outputs. This trade-off was favourable to the 50% and 70% glycerol feed concentration regimes and plateaus of about 74% exergy efficiency and 24 MJ/kg dry syngas exergy content were verified from 650 to 800 °C reactor temperatures.  相似文献   

14.
Thermodynamic investigation of glycerol reforming has been performed to study hydrogen production, carbon dioxide evolution and coke formation. Gibb's free energy direct minimization procedure was used to calculate the concentration of different components at equilibrium. The analysis was performed at temperatures from 300K to 1000K under unit atmospheric pressure. A comparative study on steam reforming of glycerol (SRG) and glycerol reforming reaction with hydrazine has been conducted in the presence of hydrazine that act as a suitable reducing agent. Incorporation of hydrazine into glycerol reforming system helped in minimizing coke formation, maximizing hydrogen and syn-gas production. A complete conversion of glycerol with coke free products, along with reduced level of carbon dioxide and maximum hydrogen generation was obtained when glycerol steam reforming process (S/G = 1) was combined with higher moles of hydrazine. Reformation at higher temperatures could enhance the hydrogen production and decrease carbon generation due to methanation reaction and hence optimum results were accomplished at 1000K and atmospheric pressure.  相似文献   

15.
A thermodynamic analysis of hydrogen production via steam and autothermal reforming of beef tallow has been carried out via the Gibbs free energy minimization method. Equilibrium calculations are performed at atmospheric pressure with a wide range of temperatures (400–1200 °C), steam-to-beef tallow ratios (1–15) and oxygen-to-beef tallow ratios (0.0–2.0).  相似文献   

16.
Glycerol reforming was investigated under supercritical water conditions (450–575 °C, 250 bar). A feed containing 5 wt.% of glycerol was continuously fed to an empty Inconel 625 reactor. The products of the reaction were separated into gas and liquid phases in a condenser. At a feed rate of 2.15 g/min, the glycerol conversion significantly increased from 0.05 to 0.97 when increasing operating temperature from 450 to 575 °C. Although lowering the feed rate (i.e. increasing the residence time) could considerably improve the conversion, carbon formation became a problem especially at high operating temperatures (550–575 °C). The major gaseous products were hydrogen (approximately 60 mol%), carbon monoxide, carbon dioxide and methane with some traces of ethane, ethylene, propane, and propylene. Various liquid products were detected including acetaldehyde, acetol, methanol, acetic acid, propionaldehyde, allyl alcohol, acetone, acrolein, ethanol, ethylene glycol, and acrylic acid but the major liquid components were acetaldehyde and acetol. With a feed glycerol concentration of 2.5 wt.% and operating temperature of 525 °C, glycerol conversion of 0.91 and H2 yield of 2.86 can be obtained without carbon formation. Finally, it was demonstrated that higher H2 yield with much lower carbon formation was observed in supercritical water reforming (250 bar) compared to conventional steam reforming at 1 bar under similar temperatures.  相似文献   

17.
Thermodynamic features of hydrogen production by glycerol steam reforming with in situ hydrogen extraction have been studied with the method of Gibbs free energy minimization. The effects of pressure (1–5 atm), temperature (600–1000 K), water to glycerol ratio (WGR, 3–12) and fraction of H2 removal (f, 0–1) on the reforming reactions and carbon formation were investigated. The results suggest separation of hydrogen in situ can substantially enhance hydrogen production from glycerol steam reforming, as 7 mol (stoichiometric value) of hydrogen can be obtained even at 600 K due to the hydrogen extraction. It is demonstrated that atmospheric pressure and a WGR of 9 are suitable for hydrogen production and the optimum temperature for glycerol steam reforming with in situ hydrogen removal is between 825 and 875 K, 100 K lower than that achieved typically without hydrogen separation. Furthermore, the detrimental influence of increasing pressure in terms of hydrogen production becomes marginal above 800 K with a high fraction of H2 removal (i.e., f = 0.99). High temperature and WGR are favorable to inhibit carbon production.  相似文献   

18.
Reaction characteristics of hydrogen production from a one-stage reaction and a two-stage reaction are studied and compared with each other in the present study, by means of thermodynamic analyses. In the one-stage reaction, the autothermal reforming (ATR) of methane is considered. In the two-stage reaction, it is featured by the partial oxidation of methane (POM) followed by a water gas shift reaction (WGSR) where the temperatures of POM and WGSR are individually controlled. The results indicate that the reaction temperature of ATR plays an important role in determining H2 yield. Meanwhile, the conditions of higher steam/methane (S/C) ratio and lower oxygen/methane (O/C) ratio in association with a higher reaction temperature have a trend to increase H2 yield. When O/C ≤ 0.125, the coking behavior may be exhibited. In regard to the two-stage reaction, it is found that the methane conversion is always high in POM, regardless of what the reaction temperature is. When the O/C ratio is smaller than 0.5, H2 is generated from the partial oxidation and thermal decomposition of methane, causing solid carbon deposition. Following the performance of WGSR, it suggests that the H2 yield of the two-stage reaction is significantly affected by the reaction temperature of WGSR. This reflects that the temperature of WGSR is the key factor in producing H2. When methane, oxygen and steam are in the stoichiometric ratio (i.e. 1:0.5:1), the maximum H2 yield from ATR is 2.25 which occurs at 800 °C. In contrast, the maximum H2 yield of the two-stage reaction is 2.89 with the WGSR temperature of 200 °C. Accordingly, it reveals that the two-stage reaction is a recommended fuel processing method for hydrogen production because of its higher H2 yield and flexible operation.  相似文献   

19.
Hydrogen production by electrochemical reforming of glycerol was investigated in this study. Within this scope, the performance of the system under different operating conditions was evaluated by parametric studies and optimum operating conditions were determined. The effects of membrane type, membrane pre-treatment procedure and temperature were investigated. System performance was examined also with long-term tests. The formation of hydrogen at the cathode was determined by analyzing the product gases by gas chromatography. Optimum condition for maximum hydrogen production was obtained with the Zn/Zn electrode pair in the presence of 0.4 M glycerol and 0.04 M H2SO4 at the anode side, 0.04 M H2SO4 at the cathode side and with pre-treated Nafion XL membrane. As the result of performance tests, room temperature and 2 V potential were found to be the most suitable operating conditions.  相似文献   

20.
In the present work the Gibbs free energy minimization, using a non-linear programming formulation and an approximation in the gas fugacities, was used to calculate the equilibrium composition for supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. The proposed formulation mathematically ensures finding the global optimal solution with no need of an initial estimate and the numerical results are close to the ones calculated using non-ideal gas formulation. Therefore, the proposed approach is reliable and easy to use, without numerical difficulties, such as an undesirable local minimum. The model predictions show a good agreement with the experimental studies in all cases studied in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号