首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation.  相似文献   

2.
In addition to the traditional spark ignition (SI), premixed, gasoline-like and compression ignition (CI), diffusion, Diesel-like operation of internal combustion engines, premixed, homogeneous charge, compression ignition (HCCI) operation has also been proposed to improve the fuel conversion efficiency and reduce the pollutant formation. To be attractive, the operation in HCCI mode has to be coupled with the other traditional operations, being HCCI in general difficult to be controlled and limited to values of the air-to-fuel equivalence ratio λ within a narrow windows set by the lean burn limits with large λ and the peak pressure limits with small λ. Furthermore, the specific kinetics of hydrogen makes this fuel more difficult than other hydrocarbons to work in an engine operating HCCI without assistance. In a recent paper, the design of a 12.8 L in-line six cylinder turbo charged directly injected heavy duty truck Diesel engine fuelled with hydrogen has been discussed. Conversion of a latest Diesel engine with a novel power turbine has been studied replacing the in-cylinder Diesel injector and glow plug with a hydrogen injector and a jet ignition pre-chamber. The pre-chamber is a small volume accommodating another hydrogen injector and a glow plug being connected to the in-cylinder through calibrated orifices. This design permits to operate the engine in four different modes:
-
diffusion with jet ignition M1 - an injection occurs in the jet ignition pre-chamber before the main chamber fuel is injected and the engine operates therefore Diesel-like;
-
mixed diffusion/premixed Diesel/gasoline like M2 - an injection occurs in the jet ignition pre-chamber after only part of the main chamber fuel is injected and mixed with air;
-
premixed with jet ignition M3 - an injection occurs in the jet ignition pre-chamber after the main chamber fuel is injected and mixed with air and the engine operates gasoline-like;
-
premixed without jet ignition M4 - no injection occurs in the jet ignition pre-chamber and the engine operates HCCI-like.
While only the Diesel-like operation was previously considered full load, all the modes including the operation HCCI-like are considered here over the full range of loads where the power turbine is either connected to the crankshaft or disconnected and the exhaust gases pass through this turbine or bypass the turbine.This paper deals with computational rather than experimental work. Computations are made with the latest predictive HCCI model using detailed kinetics of GT-POWER and the well established correlative Wiebe models for Diesel and gasoline combustion. HCCI-like operation is considered over a range of air-to-fuel equivalence ratio λ much wider than usually considered with other fuels being perhaps even more suitable than hydrogen to this operation thanks to the jet ignition assistance.  相似文献   

3.
The paper describes coupled CFD combustion simulations and CAE engine performance computations to describe the operation over the full range of load and speed of an always lean burn, Direct Injection Jet Ignition (DI–JI) hydrogen engine. Jet ignition pre-chambers and direct injection are enablers of high efficiencies and load control by quantity of fuel injected. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the spark-less pre-chamber of the DI–JI engine, where it mixes with the air entering from the main chamber and auto-ignites because of the high temperature of the hot glow plug. Then, jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. Engine maps of brake specific fuel consumption vs. speed and brake mean effective pressure are computed first. CAE vehicle simulations are finally performed evaluating the fuel consumption over emission cycles of a vehicle equipped with this engine.  相似文献   

4.
A prior paper has presented a novel design of a heavy duty truck engine fuelled with H2. In this design, the customary in-cylinder Diesel injector and glow plug are replaced with a main chamber fuel injector and a jet ignition pre-chamber. The jet ignition pre-chamber is a small volume that is connected to the in-cylinder through calibrated orifices accommodating another fuel injector and a glow or a spark plug that controls the start of combustion. This design permits to operate the engine in four different modes: traditional compression ignition (CI), diffusion, Diesel-like (M1); mixed gasoline/Diesel-like (M2); traditional spark ignition (SI), premixed, gasoline-like (M3); premixed, homogeneous charge compression ignition HCCI-like (M4). In the mode diffusion with jet ignition (M1), an injection occurs in the jet ignition pre-chamber before the main chamber fuel is injected and the engine operates therefore mostly Diesel-like. In the mode mixed diffusion/premixed Diesel/gasoline-like (M2) an injection occurs in the jet ignition pre-chamber after only part of the main chamber fuel is injected and mixed with air. In the mode premixed with jet ignition (M3), an injection occurs in the jet ignition pre-chamber after the main chamber fuel is injected and mixed with air and the engine operates gasoline-like. Finally, in the mode premixed without jet ignition (M4), no injection occurs in the jet ignition pre-chamber and the engine operates HCCI-like. Modelling results have already been presented and discussed with H2 as the main chamber and pre-chamber fuel. This paper considers the option to accommodate a second main chamber injector that will inject the NH3 that will then burn in air thanks to the hot combusting gases from the combustion of H2 and air using the modes M1 and M2 described above. The mode M3 also of interest is not considered here. First results of simulations show the opportunity to achieve better than Diesel fuel energy conversion efficiency thanks to the reduced heat losses of the “cold burning” NH3 and suggest to perform the experiments needed to further support the findings.  相似文献   

5.
Recent papers 1, 2, 3, 4 and 5 have proposed two different systems to more efficiently and more rapidly burn the fuel in highly boosted, high compression ratio, directly injected internal combustion engines permitting multi-mode combustion operation. In a first system, a second direct injector is coupled with the standard Diesel direct injector and glow plug. The second direct injector introduces the most of the fuel while the Diesel direct injector only introduces a minimum amount of fuel to control the start of the combustion about top dead centre. The fuel injected before the Diesel ignition injection burns premixed, the fuel injected after the Diesel ignition injection burns diffusion. This design permits combustion premixed gasoline-like if all the fuel is injected before the Diesel ignition injection, diffusion Diesel-like if all the fuel is injected after the Diesel ignition injection (as done in the Westport High Pressure Direct Injection concept [12]), and mixed gasoline/Diesel like injecting the fuel before and after the Diesel ignition injection. The premixed gasoline-like mode is actually a homogeneous charge compression ignition (HCCI)-like mode, where an amount of fuel smaller than the threshold value producing top dead centre auto ignition is then ignited at top dead centre by the Diesel ignition injection in a more robust, stable and repeatable operation unaffected by small changes in properties and composition of the fuel and air mixture. In an alternative design, the glow plug is replaced by a jet ignition devices feed preferably with H2. In this case, a spark ignition ignites the stoichiometric H2-air mixture within the jet ignition pre-chamber. The jets of hot reacting H2-air combusting gases then ignite the main chamber premixed mixture in the gasoline-like operation or create suitable conditions for the fuel subsequently injected to burn diffusion in the Diesel-like operation or perform both duties in the mixed gasoline/Diesel-like operation. A single main chamber direct injector is generally needed (for example with H2, CH4 or C3H8 fuels). With NH3, a second main chamber direct injector with H2 is also used to limit the volume of the jet ignition pre-chamber. In this short communications, the results of detailed chemistry simulations with the SRM (Stochastic Reactor Model) suite, a sophisticated engineering tool combining conventional 1D or 3D fluid dynamics approaches are presented to further support these two engine concepts working with fuels H2, CH4, C3H8, NH3, I-C8H18 and N-C7H16 and adopting two different mechanisms for chemical kinetics. Within the limits of the present simulations (a very accurate chemical kinetic for combustion of I-C8H18 and N-C7H16 but a much less accurate chemical kinetic for the other fuels and especially for NH3, unavailability of variable composition and variable properties multiple injections), the Diesel injection ignition and the hydrogen jet ignition are proved to permit combustion modes leading to indicated thermal efficiencies up to 10% better than the latest Diesels at high loads within the same peak pressure and peak temperature constraints.  相似文献   

6.
湍流射流点火(Turbulent Jet Ignition,TJI)是一种有效的燃烧增强技术,可提供更高的点火能量,使发动机稳定着火,且可以提高燃烧压力和燃烧速率,缩短燃烧持续期,是实现发动机稀薄燃烧的有效手段。基于一台带有预燃室的点燃式单缸试验机,开展了TJI模式下天然气发动机性能的试验研究。首先,研究了不同过量空气系数下TJI对天然气发动机动力性能、排放性能及燃烧特性的影响,并与火花塞点火(Spark Ignition,SI)模式进行对比;其次,在稀燃条件下分别探究了进气增压和预燃室喷氢对天然气发动机动力性、经济性及燃烧过程的优化作用。结果表明:TJI的使用可有效拓展天然气发动机的稀燃极限,且燃烧滞燃期和燃烧持续期均更短,放热率更高;过量空气系数1.5为甲烷TJI最佳稀燃工况,此时燃油消耗率最低,且可实现氮氧化物近零排放;此外,采用进气增压的方式可以提高TJI发动机在高负荷下的经济性;TJI模式下,相较于预燃室喷甲烷,预燃室喷氢气可进一步缩短滞燃期和燃烧持续期,提高放热率,达到提升TJI性能的效果。  相似文献   

7.
This paper presents a new in-cylinder mixture preparation and ignition system for various fuels including hydrogen, methane and propane. The system comprises a centrally located direct injection (DI) injector and a jet ignition (JI) device for combustion of the main chamber (MC) mixture. The fuel is injected in the MC with a new generation, fast actuating, high pressure, high flow rate DI injector capable of injection shaping and multiple events. This injector produces a bulk, lean stratified mixture. The JI system uses a second DI injector to inject a small amount of fuel in a small pre-chamber (PC). In the spark ignition (SI) version, a spark plug then ignites a slightly rich mixture. In the auto ignition version, a DI injector injects a small amount of higher pressure fuel in the small PC having a hot glow plug (GP) surface, and the fuel auto ignites in the hot air or when in contact with the hot surface. Either way the MC mixture is then bulk ignited through multiple jets of hot reacting gases. Bulk ignition of the lean, jet controlled, stratified MC mixture resulting from coupling DI with JI makes it possible to burn MC mixtures with fuel to air equivalence ratios reducing almost to zero for a throttle-less control of load diesel-like and high efficiencies over almost the full range of loads.  相似文献   

8.
为明晰不同点火方式对汽油机稀薄燃烧特性的影响规律,在一款排量为0.5L的研究型单缸机上试验研究了传统火花塞和主动预燃室两种不同点火方式下发动机燃烧及排放特性,探索主动预燃室拓展稀薄燃烧极限的多种影响因素。研究结果表明,稀薄燃烧可有效降低油耗,提高发动机热效率。传统点火线圈的稀燃极限处于过量空气系数1.5附近,最高指示热效率为45.0%,而采用主动预燃室系统后,稀燃极限可进一步拓展,过量空气系数可达2.0,指示热效率提升至46.5%,氮氧化物排放比采用传统火花塞点火技术时降低约88%;主动预燃室匹配高压缩比14.80的燃烧系统,可进一步拓展稀燃极限至过量空气系数2.1,指示热效率可达48.0%,氮氧化物排放继续降低,在过量空气系数采用2.1时NOx排放最低可达58×10-6。  相似文献   

9.
The turbocharged Diesel engine is the most efficient engine now in production for transport applications with full load brake engine thermal efficiencies up to 40-45% and reduced penalties in brake engine thermal efficiencies reducing the load. The secrets of the turbocharged Diesel engine performances are the high compression ratio and the lean bulk combustion mostly diffusion controlled in addition to the better use of the exhaust energy. Despite these advantages and the further complications of hydrogen in terms of abnormal combustion phenomena and displacement effect, the most part of the dual fuel Diesel-hydrogen engines has been developed so far injecting hydrogen in the intake manifold or in the intake port, and then injecting the Diesel fuel in the cylinder to ignite there a homogeneous mixture. This paper shows how a latest production common-rail Diesel engine could be modified replacing the Diesel injector by a double injector as those proposed by Westport since more than two decades for CNG first and then for CNG and hydrogen to provide much better performances. A model is first developed and validated versus extensive high quality dynamometer data for the Diesel engine only covering with almost 200 points the load and speed range. This model replaces the multiple injection strategy with a single equivalent injection for the purposes of the brake efficiency results still providing satisfactory accuracy. The model is then used to simulate the dual fuel operation with a pilot Diesel followed by a main hydrogen injection replacing the Diesel fuel with the hydrogen fuel and using the same parameters for start and duration of the equivalent injection at same percentage load and speed. While the top load air-to-fuel ratio of the Diesel is a lean 1.55, the top air-to-fuel ratio of the hydrogen is assumed to be a stoichiometric 1. Within the validity of these assumptions it is shown that the novel engine has better than Diesel fuel conversion efficiencies and higher than Diesel power outputs. These results clearly indicate the development of the direct injection system as the key factor where to focus research and development for this kind of engines.  相似文献   

10.
The pre-chamber spark ignition system is a promising advanced ignition system adopted for lean burn spark ignition engines as it enables stable combustion and enhances engine efficiency. The performance of the PCSI system is governed by the turbulent flame jet ejected from the pre-chamber, which is influenced by the pre-chamber geometrical parameters and the operating conditions. Hence, the current study aims to understand the effects of pre-chamber volume, nozzle hole diameter, equivalence ratio, and initial chamber pressure on the combustion and flame jet characteristics of hydrogen-air mixture in a passive PCSI system. Pre-chamber with different nozzle hole diameters (1 mm, 2 mm, 3 mm, and 4 mm) and volumes (2%, 4%, and 6% of the engine clearance volume) were selected and manufactured in-house. The experimental investigation of these pre-chamber configurations was carried out in a constant-volume combustion chamber with optical access. The flame development process was captured using a high-speed camera at a rate of 20000 fps, and the images were processed in MATLAB to obtain quantitative data. The combustion characteristics of hydrogen-air mixtures with the PCSI system improved when compared to the conventional SI system; however, the improvement was more significant for ultra-lean mixtures. Early start of combustion and shorter combustion duration were observed for PCSI – D2 and PCSI – D3 configurations, respectively and improved combustion and flame jet characteristics were also noted for these configurations. With the increase in pre-chamber volume, ignition energy associated with the flame jet increases, which reduces the combustion duration and the ignition lag.  相似文献   

11.
天然气发动机的研究现状   总被引:4,自引:1,他引:4  
天然气能降低发动机的有害物排放,是一种比较理想的发动机代用燃料。稀燃天然气发动机具有较高的热效率和较低的NOx排放。均质充量压缩着火(HCCI)燃烧也是提高稀燃天然气发动机热效率的方法之一,并有很低的NOx排放。本文综述了稀燃天然气发动机和HCCI天然气发动机的研究进展,尤其是燃烧室形状、点火系统、充量分层、加氢等对天然气发动机性能的影响及天然气HCCI发动机的燃烧与排放特点。  相似文献   

12.
Automobiles are one of the major sources of air pollution in the environment. In addition CO2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23° crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5° CA before gas exchange top dead centre (BGTDC) with injection duration of 30° CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NOX emissions were higher by 1–2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO2) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen in the dual fuel mode in a Diesel engine improves the performance and reduces the exhaust emissions from the engine except for HC and NOX emissions.  相似文献   

13.
The Hydrogen Assisted Jet Ignition (HAJI) is a physico-chemical combustion enhancement system developed at the University of Melbourne. Jet ignition can ignite ultra-lean air/fuel mixtures which are far beyond the stable ignition limit of a spark plug. Jet ignition may further enhance the combustion properties of hydrogen enabling the development of a diesel-like, almost throttle-less, control of load by quantity of fuel injected for higher thermal efficiencies all over the range of loads. The object of this paper is to show the benefits of jet ignition and present the latest results obtained on a four cylinder engine having the jet ignition coupled with cryogenic hydrogen injection and turbo charging.  相似文献   

14.
Turbulent hot-jet ignition (THJI) is an advanced ignition enhancement technology which can potentially overcome the problem associated with lean burn combustion. The present study makes an effort on the comprehensive understanding of a hydrogen fueled THJI chamber with various pre-chamber spark locations. Computational fluid dynamics (CFD) simulations are performed using an in-house code based on the KIVA-3V release 2 program coupled with an in-house chemical solver. A detailed chemical kinetics mechanism with 10 species and 19 reversible reactions is used for the H2/air mixture in both the pre-chamber and the main chamber. The results show that moving the spark ignition location farther from the orifice significantly reduces the 0?10% mass fraction burn period. By analyzing the local Mach number, turbulence kinetic energy and turbulence length scale, the compressibility and turbulence level of the jet flow are evaluated. Further analysis of the OH mass fraction distribution identifies three regions in the hot jet, i.e. extinction region, just-igniting region and combustion region. A critical Damköhler number of 0.3 is determined to separate the extinction region from the other regions. Meanwhile, transition Damköhler numbers ranging from 0.3 to 0.6 are determined in the just-igniting region.  相似文献   

15.
Effect of turbulent jet ignition induced by pre-chamber sparkplug (PCSP), a simper version of turbulent jet ignition pre-chamber system without fuel injection, on the air-hydrogen combustion characteristics was conducted based on an optical constant volume chamber under varied equivalence ratio conditions. The dynamic pressure sensor and schlieren system were used to evaluate the heat release and flame propagation characteristics. The results confirm the feasibility of PCSP type turbulent jet. The jet increase the flame propagation speed significantly compared to standard ignition, which shorten ignition delay and combustion duration, advance T50 largely, and increase the maximum combustion pressure slightly. As a result, the combustion intensity is increased largely, especially under lean regime, the combustion intensity index can be as high as 1.7 at certain equivalence ratio. In addition, the PCSP turbulent jet reduces the sensitivity of heat release to variation of equivalence ratio, which is helpful to simplify the combustion controlling strategy. Furthermore, with the enhancement of the flame propagation, the tendency of knocking combustion can be suppressed potentially.  相似文献   

16.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%. __________ Translated from Transactions of CSICE, 2006, 24(5): 394–401 [译自:内燃机学报]  相似文献   

17.
采用“气道内二交燃油喷射”技术以实现汽油机稀混合气燃烧。将每循环所需燃油量分两部分喷射,一部分燃油为缸内提供均质稀混合气,另一部分燃油借助地气流动和适时喷射使混合气形成“局部分层”。在一台五气门汽油上实验证实,这种新喷油方式能够节油17%,比传统稀燃方式提高稀燃能力2个空燃比单位,并进一步降低HC和NOx排放浓度30%-50%,调节两部分喷油的分配比例,可自由控制火花塞周围混合气浓度及其它区域混合气的浓度。  相似文献   

18.
Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavy-duty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called pre-chamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a large-bore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides, as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases.  相似文献   

19.
稀燃天然气发动机燃烧循环变动影响因素研究   总被引:1,自引:0,他引:1  
通过对一台点燃式多点电喷稀燃天然气发动机进行试验,获得了不同工况下的平均指示压力循环变动系数,以此为基础研究了燃空当量比、节气门开度、转速及点火时刻对稀燃天然气发动机燃烧循环变动的影响趋势。结果表明:混合气燃空当量比越小,燃烧循环变动越明显,当燃空当量比降低到一定值时,平均指示压力循环变动系数的增长会突然加大;节气门开度越小燃烧循环变动越明显,节气门开度小于30%后,其对燃烧循环变动影响更加明显;燃烧循环变动量随转速上升有增加的趋势,在高转速工况下燃烧循环变动的加强尤其明显;在工况一定的条件下存在一个最优的点火时刻可使稀燃天然气发动机的燃烧循环变动最小。  相似文献   

20.
射流燃烧技术在车用汽油机上的应用研究   总被引:3,自引:0,他引:3  
本介绍了射流燃烧室在车用汽油机上的应用研究。汽油机射流燃烧室具有独特的结构,在压缩和燃烧过程中燃烧室内能形成强烈的微涡流,因此它可以有效地抑制发动机的爆震,且在燃用相同辛烷值燃料时能提高发动机的压缩比,并形成快速燃烧和稀混合气燃烧。这种燃烧系统在几种常用汽油机上的应用表明,发动机性能得到了明显的改善,特别是燃料消耗率和排气污染显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号