首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorographene (FG), which inherits the properties of graphene and fluorographite (FGi), was successfully fabricated through a simple sonochemical exfoliation route in N-methyl-2-pyrrolidone (NMP) and then MgH2-FG composite was prepared by ball milling. The dehydrogenation and rehydrogenation performances of MgH2-FG composite were investigated systematically comparing with as-received MgH2 and MgH2-G composite. It is found that the as-prepared FG exhibited a significant catalytic effect on the dehydrogenation and rehydrogenation properties of MgH2. The MgH2-FG composite can uptake 6.0 wt% H2 in 5 min and release 5.9 wt% H2 within 50 min at 300 °C, while the as-received MgH2 uptakes only 2.0 wt% H2 in 60 min and hardly releases hydrogen at the same condition. The hydrogen storage cycling kinetics in the first 10 cycles remains almost the same, indicating the excellent reversibility of the MgH2-FG composite. SEM analysis shows that the particle size of MgH2-FG composite was ∼200 nm, much smaller than that of as-received MgH2 (∼20 μm). TEM observations show that MgH2 particles were embedded in FG layers during ball milling. The dehydrogenation apparent activation energy for the MgH2 is reduced from 186.3 kJ mol−1 (as-received MgH2) to 156.2 kJ mol−1 (MgH2-FG composite). The catalytic mechanism has been proposed that F atoms in FG serve as charge-transfer sites and accelerate the rate of hydrogen incorporation and dissociation, consequently enhance the dehydrogenation and rehydrogenation properties of MgH2-FG composite. Furthermore, the FG can inhibit the sintering and agglomeration of MgH2 particle, thus it improves the cycling dehydrogenation and rehydrogenation of MgH2-FG composite.  相似文献   

2.
The effect of Ti0.4Cr0.15Mn0.15V0.3 (termed BCC due to the body centered cubic structure) alloy on the hydrogen storage properties of MgH2 was investigated. It was found that the hydrogenated BCC alloy showed superior catalysis properties compared to the quenched and ingot samples. As an example, the 1 h milled MgH2 + 20 wt.% hydrogenated BCC shows a peak temperature of dehydrogenation of about 294 °C. This is 16, 27 and 74 °C lower than those of MgH2 ball milled with quenched BCC, ingot BCC and an uncatalysed MgH2 sample, respectively. The hydrogenated BCC alloy is much easier to crush into small particles, and embed in MgH2 aggregates as revealed by X-ray diffraction and scanning electron microscope results. The BCC not only increases the hydrogen atomic diffusivity in the bulk Mg but also promotes the dissociation and recombination of hydrogen. The activation energy, Ea, for the dehydrogenation of the MgH2/hydrogenated BCC mixture was found to be 71.2 ± 5 kJ mol H2−1 using the Kissinger method. This represents a significant decrease compared to the pure MgH2 (179.7 ± 5 kJ mol H2−1), suggesting that the catalytic effect of the BCC alloy significantly decreases the activation energy of MgH2 for dehydrogenation by surface activation.  相似文献   

3.
Desorption of hydrogen atoms from the (110) surface of rutile magnesium hydride (MgH2) was investigated using density functional theory (DFT) and pseudopotential method. System was represented by (110) (2×2) slab MgH2 supercell with 12 atomic layers along the z-axis. The H-desorption was modeled by the successive release of the four two-fold bonded H atoms from the (110) surface of MgH2. Dependence of the H-desorption energy on number and configuration of remaining surface hydrogen atoms has been determined. The features of the H atoms diffusion from the bulk towards the surface have been investigated, too. The results suggest that decrease in number of surface H atoms generally lowers the H-desorption energy in each desorption step and that both the H–H and the Mg–H interatomic interactions strongly influence the H-desorption process. The hydrogen vacancy formation energy in the first three sub-surface layers also exhibits a pronounced dependence on concentration. These findings lead to the conclusion that tendency of the MgH2 (110) surface to preserve a maximum possible surface H concentration in its most stable configuration is the limiting factor for the H-desorption kinetics. In principle, the obtained results allow us to determine preferred paths of surface and sub-surface H-diffusion for a wide range of H concentrations and the principle features of the MgH2 dehydrogenation process, at least for the H-rich region. Being rather comprehensive, the approach is applicable for other metal hydrides, as well.  相似文献   

4.
We have performed a comprehensive theoretical investigation of the electronic band structure, density of states, electronic charge density and optical properties of the novel hydrogen storage material MgH2 and LiH compounds. The all electron full potential linear augmented plane wave method was employed. The local density approximation (LDA), the generalized gradient approximation (GGA) and the Engle Vosko generalize gradient approximation (EVGGA) were used to treat the exchange-correlation potential. The calculations show that the MgH2 compound is indirect gap semiconductor as the conduction band minimum (CBM) situated at R point of the Brillouin zone (BZ), while the valence band maximum (VBM) located between Λ and Γ points of the BZ, whereas LiH is a direct gap material as the CBM and the VBM located at X point of BZ. The values of the calculated energy band gap of MgH2 (LiH) compounds are 3.372 (2.769), 3.735 (3.067) and 5.104 (4.488) eV for LDA, GGA, and EVGGA, respectively. From the partial density of states and the electronic charge density in (0 0 1) and (1 0 1) crystallographic planes we conclude that there exists strong ionic bonds. The bond lengths were calculated and compared with the available experimental and theoretical results, our results show better agreement with the experimental values than the other theoretical results. The frequency dependent dielectric function's dispersions were calculated and analyzed so as to obtain further insight into the electronic structure. The calculated dielectric function's dispersions confirm the semiconducting nature of MgH2 and LiH compounds.  相似文献   

5.
MgH2 is one of the most promising hydrogen storage materials due to its high capacity and low cost. In an effort to develop MgH2 with a low dehydriding temperature and fast sorption kinetics, doping MgH2 with NiCl2 and CoCl2 has been investigated in this paper. Both the dehydrogenation temperature and the absorption/desorption kinetics have been improved by adding either NiCl2 or CoCl2, and a significant enhancement was obtained in the case of the NiCl2 doped sample. For example, a hydrogen absorption capacity of 5.17 wt% was reached at 300 °C in 60 s for the MgH2/NiCl2 sample. In contrast, the ball-milled MgH2 just absorbed 3.51 wt% hydrogen at 300 °C in 400 s. An activation energy of 102.6 kJ/mol for the MgH2/NiCl2 sample has been obtained from the desorption data, 18.7 kJ/mol and 55.9 kJ/mol smaller than those of the MgH2/CoCl2, which also exhibits an enhanced kinetics, and of the pure MgH2 sample, respectively. In addition, the enhanced kinetics was observed to persist even after 9 cycles in the case of the NiCl2 doped MgH2 sample. Further kinetic investigation indicated that the hydrogen desorption from the milled MgH2 is controlled by a slow, random nucleation and growth process, which is transformed into two-dimensional growth after NiCl2 or CoCl2 doping, suggesting that the additives reduced the barrier and lowered the driving forces for nucleation.  相似文献   

6.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

7.
This paper deals with non-isothermal kinetics models of hydrogen desorption from MgH2 altered by ion bombardment and stresses the importance of the MgH2 surface during its decomposition. In the case of argon-irradiated samples, where defects are induced in the near-surface region, the Avrami Erofeev mechanism with parameter n = 2 can be adopted while in the case of boron-irradiated samples, where defects are created deeper in the bulk, the desorption mechanism is the same with n = 3. The difference is possibly related to the concentration and good dispersion of defects in near-surface region in the samples.  相似文献   

8.
The reaction rate of MgH2 with NH3 is studied using a two-layered structure containing a top MgH2 layer and a bottom LiNH2 layer. Quantification of the effluent gas composition from the two-layered structure indicates substantial NH3 emission, while the X-ray diffraction analysis reveals little formation of the reaction products between MgH2 and NH3. In contrast, the study of the two-layered structure containing a top LiH layer and a bottom LiNH2 layer reveals that the reaction between LiH and NH3 is much faster than that between MgH2 and NH3.  相似文献   

9.
The hydrogen sorption of mixtures of magnesium amide (Mg(NH2)2) and lithium hydride (LiH) with different molecular ratios have been investigated using in-situ neutron diffraction; the experiments were performed at D20/ILL and SPODI/FRMII. The results reveal a common reaction pathway for 1:2, 3:8 and 1:4 magnesium amide: lithium hydride mixtures. Intermediate reaction steps are observed in both ab- and desorption. The thermodynamic properties of the system at 200 °C are not changed by the addition of excess lithium hydride. This finding has important implications for the tailoring the characteristics of this promising hydrogen storage material.  相似文献   

10.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

11.
In attempt to improve desorption behaviour of MgH2, the influence of well-defined structural changes induced within a thin surface layer of MgH2 have been investigated. The defects were induced by 30 keV C2+ ions irradiation using different fluencies ranging from 1012–1016 ions/cm2. The hydrogen desorption properties were investigated by thermal desorption spectroscopy analysis (TDS), while kinetics parameters were deduced using non-isothermal kinetic approach. The existence of multiple TDS peaks and different curve shapes indicate difference in desorption mechanism. To understand changes in the rate limiting step, shapes of all desorption peaks have been analyzed using different kinetic models. Regarding the irradiated sample, the function based on Avrami–Erofeev model with n=4n=4 gives the best fit over θ   range from 0.3 to 0.8 while for untreated sample the best fit is obtained for Avrami–Erofeev model with n=3n=3. The change in mechanism can be attributed to the different way of nuclei growth.  相似文献   

12.
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system.  相似文献   

13.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

14.
To improve hydrogen desorption properties of MgH2, mechanical milling of MgH2 with low concentration (2 and 5%) of NaNH2 has been performed. Pre-milling of MgH2 for 10 h has been done and then six samples have been synthesised with different milling times from 15 to 60 min. Microstructural characterisation has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering measurements (PSD), and correlated to desorption properties examined using Differential Scanning Calorimetry (DSC) and Hydrogen Sorption Analyser (HSA). Thermal analysis shows that desorption temperatures are shifted towards lower values. It also highlights the significance of milling time and additive concentration on desorption behaviour.  相似文献   

15.
It is well known that the dehydrogenation pathway of the LiBH4–MgH2 composite system is highly reliant on whether decomposition is performed under vacuum or a hydrogen back-pressure. In this work, the effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation kinetics of the LiBH4–MgH2 system are studied under either vacuum or hydrogen back-pressure, as well as the subsequent rehydrogenation and cycling. For the pristine sample, faster desorption kinetics was obtained under vacuum, but the performance is compromised by slow absorption kinetics. In contrast, hydrogen back-pressure remarkably promotes the absorption kinetics and increases the reversible hydrogen storage capacity, but with the penalty of much slower desorption kinetics. These drawbacks were overcome after doping with NbF5, with which the dehydrogenation and rehydrogenation kinetics was significantly improved. In particular, the enhanced kinetics was observed to persist well, even after 9 cycles, in the case of the NbF5 doped sample under hydrogen back-pressure, as well as the suppression of forming Li2B12H12. Furthermore, the mechanism that is behind these effects of NbF5 additive on the reversible dehydrogenation reaction of the LiBH4–MgH2 system is discussed.  相似文献   

16.
In this study, some transitional metal carbides (Ti3C2, Ni3C, Mo2C, Cr3C2 and NbC) were prepared to enhance the hydrogen storage behaviors of magnesium-based materials. The carbides with a weight ratio of 5 wt% were introduced into magnesium hydride (MgH2) by mechanical ball milling, and the microstructure, phase composition and hydrogen storage properties of the composites were studied in detail. The phase compositions of Ni3C, Mo2C, Cr3C2 and NbC in the ball-milled composites have not changed during hydrogen absorption and desorption cycles. However, Ti3C2 decompose into multivalent Ti during hydrogenation process. All of these metal carbides can enhance the hydrogen absorption and desorption kinetics of MgH2. Among them, Ti3C2 shows the best catalytic effect on dehydrogenation kinetic properties of MgH2, followed by the Ni3C, NbC, Mo2C and Cr3C2.  相似文献   

17.
The understanding of hydrogen bonding in magnesium and magnesium based alloys is an important step toward its prospective use. In the present study, a density functional theory (DFT) based, full-potential augmented plane waves method of calculation, extended with local orbitals (FP-APW+lo), was used to investigate the stability of MgH2 and MgH2:TM (TM = Ti and Co) 10 wt % alloys and the influence of this alloying on hydrogen storage properties of MgH2 compound. Effects of a possible spin polarisation induced in the system by transition metal (TM) ions were considered too. It has been found that TM-H bonding is stronger than the Mg–H bond, but at the same time it weakens other bonds in the second and third coordination around a TM atom, which leads to overall destabilization of the MgH2 compound. Due to a higher number of d-electrons, this effect is more pronounced for Co alloying, where in addition, the spin polarisation has a noticeable and stabilising influence on the compound structure.  相似文献   

18.
The present investigations are focused on the effect of different Ti-based catalysts (Ti, TiO2, TiCl3 and TiF3) on de/re-hydrogenation characteristics of nanocrystalline MgH2. Desorption temperature of milled MgH2 lowers from 380 to 350, 340, 310 and 260 °C with the addition of Ti, TiO2, TiCl3 and TiF3 respectively. The rehydrogenation characteristics are also improved through the deployment of Ti-based catalysts. Among all Ti based additives, TiF3 is found to be the most effective catalyst for hydrogen sorption from nano MgH2. The better catalytic effect of TiF3 over other Ti-based catalyst can be explained on the basis of temperature programmed reduction (TPR) studies. TPR experiments performed for different Ti additives, reveals that there is no oxidation/reduction reaction below 400 °C except for TiF3. The TPR profile of TiF3 shows some oxidation/reduction reaction exhibits at 200 °C. In order to further improve the sorption characteristics and cyclability of TiF3 catalyzed nano MgH2, we have investigated the effect of SWCNTs in MgH2+TiF3 sample. De/rehydrogenation characteristics reveal the synergistic effect of SWCNTs and TiF3 in MgH2+TiF3 sample. The details of the improvement in sorption behavior of MgH2–TiF3 in presence of SWCNTs are described and discussed.  相似文献   

19.
The effect of admixing catalysts comprised of carbon nanostructures, specifically planar, helical and twisted carbon nanofibers, spherical carbon particles and multi-walled carbon nanotubes, on the hydrogen storage properties of magnesium hydride has been investigated. Optimum results were achieved with the mixture containing twisted carbon nanofibers (TCNF) synthesized by Ni catalyst derived by oxidative dissociation of catalyst precursor LaNi5. The desorption temperature of 2 wt.% TCNF admixed MgH2 is ∼65 K lower than that of pristine MgH2 milled for the same duration. The enhancement in hydrogen absorption capacity of MgH2 admixed with 2 wt.% TCNF has been found to be two-fold in the first 10 minutes at 573 K and under a hydrogen pressure of 2 MPa, i.e. 4.8wt% as compared to 2.5 wt% for MgH2 alone. The increase in capacity by a factor of about two within the first 10 minutes as a result of the catalytic activity of TCNF is one of the exciting results obtained for hydrogen absorption in catalyzed MgH2.  相似文献   

20.
First-principles calculations based on density functional theory (DFT) were performed to study the destabilizing mechanism of co-doped MgH2 with Al and Y. From the minimization of total electronic energy, the preferential positions of dopants are determined. The calculated formation enthalpy and substitution enthalpy show that incorporation of Al combined with Y atoms into MgH2 is energetically favorable relative to Al doping alone. Due to strong interaction of the dopant Y with Mg and Al, the hydrogen dissociation energy and the dehydrogenation enthalpy are both reduced, indicating that the synergetic effect of Al and Y on destabilizing the MgH2 is superior to that of Al doping. The electronic structures show that the breakage of Mg–H bond is much easier in co-doped case, because of the conduction band shift below the Fermi level and the hybridization of dopants with Mg atoms, which effectively decrease the hybridization between Mg and H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号