首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: A study was undertaken to investigate the effects of non-invasive assist-control ventilation (ACV) by nasal mask on respiratory physiological parameters and comfort in acute on chronic respiratory failure (ACRF). METHODS: Fifteen patients with chronic obstructive pulmonary disease (COPD) were prospectively and randomly assigned to two non-invasive ventilation (NIV) sequences in spontaneous breathing (SB) and ACV mode. ACV settings were always optimised and therefore subsequently adjusted according to patient's tolerance and air leaks. RESULTS: ACV significantly decreased all the total inspiratory work of breathing (WOBinsp) parameters, pressure time product, and oesophageal pressure variation in comparison with SB mode. The ACV mode also resulted in a significant reduction in surface diaphragmatic electromyographic activity to 36% of the control values and significantly improved the breathing pattern. SB did not change the arterial blood gas tensions from baseline values whereas ACV significantly improved both the PaO2 from a mean (SD) of 8.45 (2.95) kPa to 13.31 (2.15) kPa, PaCO2 from 9.52 (1.61) kPa to 7.39 (1.39) kPa, and the pH from 7.32 (0.03) to 7.40 (0.07). The respiratory comfort was significantly lower with ACV than with SB. CONCLUSIONS: This study shows that the clinical benefit of non-invasive ACV in the management of ACRF in patients with COPD results in a reduced inspiratory muscle activity providing an improvement in breathing pattern and gas exchange. Despite respiratory discomfort, the muscle rest provided appears sufficient when ACV settings are optimised.  相似文献   

2.
We compared the effects of two step durations on breathing pattern, mouth occlusion pressure and "effective" impedance of the respiratory system during incremental exercise. Nine normal subjects (mean age: 27.8+/-1.21 years) performed two incremental exercise tests in randomized order: one test with step increments every 1 min 30s and the other, every 4 min. After a warm-up at 25 W for the 1 min 30 s test, the power was increased by 50 W from 50 W to exhaustion. During the last minute at each power, we measured ventilation (VE), tidal volume (VT), breathing frequency (fR), inspiratory and expiratory time (TI and TE), total time of the respiratory cycle (TTOT), TI/TTOT, mean inspiratory flow (VT/TI), mouth occlusion pressure (P0.1), "effective" impedance of the respiratory system (P0.1/(VT/ TI)) and venous blood lactate concentration ([La]). Our result showed that at maximal exercise the power was significantly higher (p < 0.01) and [La] lower (p < 0.01) in the 1 min 30 s test. At 100, 150 and 200 W, the 4 min test showed significantly higher oxygen uptake (VO2), carbon dioxide output (VCO2), VE, P0.1, fR, VT/TI and HR (p <0.001) and significantly lower TI, TE and TTOT (p<0.01). [La] was significantly higher at 150 W (p<0.05) and 200 W (p<0.001). At the same VCO2, P0.1 was not significantly different between the two tests, whereas VE showed a tendency to be higher (p = 0.08) and P0.1/(VT/TI) was significantly lower during the 4 min test. In conclusion, this study allowed us to quantify the difference in inspiratory neuromuscular output and ventilatory response between 1 min 30s and 4 min tests and showed that different step durations alter the relationship between inspiratory neuromuscular output and mean inspiratory flow.  相似文献   

3.
In 11 ventilator-dependent patients, we undertook a head-to-head comparison of patient-ventilator interaction during four ventilator modes: assist-control ventilation (ACV), intermittent mandatory ventilation (IMV), pressure support (PS), and a combination of IMV and PS. Progressive increases in IMV rate and PS level each decreased inspiratory pressure-time product (PTP) (p < 0.0001). These reductions in PTP were greater with PS than with IMV at lower but proportional levels of maximal assistance (p < 0.005). When PS 10 cm H2O was added to a given level of IMV, greater reductions in PTP were achieved not only during intervening (PS) breaths (p < 0.001), but also during mandatory (volume-assisted) breaths (p < 0.0005); this additional unloading during mandatory breaths was proportional to the decrease in respiratory drive (dP/dt) during intervening breaths (r = 0.67, p < 0.0001). Maximal unloading occurred with ACV, achieving more than a fivefold decrease in PTP compared with unassisted breathing. Decreases in PTP were confined to the post-trigger phase, and PTP of the post-trigger phase correlated with dP/dt (r = 0.78, p < 0.0001). Effort during the trigger phase remained constant despite marked changes in drive and intrinsic positive end-expiratory pressure (PEEPi). Ineffective triggering occurred with all modes, and wasted PTP increased with increasing levels of assistance as a result of the accompanying decrease in drive and increase in volume. Breaths preceding nontriggering efforts had shorter respiratory cycle times (p < 0.0005) and expiratory times (p < 0.0001) and higher PEEPi (p < 0.0001), indicating that neural-mechanical asynchrony resulted from inspiratory activity commencing prematurely before elastic recoil pressure had fallen to a level that could be overcome by a patient's muscular effort. Thus, increases in the level of ventilator assistance produced progressive decreases in inspiratory muscle effort and dyspnea,which were accompanied by increases in the rate of ineffective triggering.  相似文献   

4.
OBJECTIVE: To evaluate treatment with noninvasive ventilation (NIV) by nasal mask as an alternative to endotracheal intubation and conventional mechanical ventilation in patients with hematologic malignancies complicated by acute respiratory failure to decrease the risk of hemorrhagic complications and increase clinical tolerance. DESIGN: Prospective clinical study. SETTING: Hematologic and general intensive care unit (ICU), University of Rome "La Sapienza". PATIENTS: 16 consecutive patients with acute respiratory failure complicating hematologic malignancies. INTERVENTIONS: NIV was delivered via nasal mask by means of a BiPAP ventilator (Respironics, USA); we evaluated the effects on blood gases, respiratory rate, and hemodynamics along with tolerance, complications, and outcome. MEASUREMENTS AND RESULTS: 15 of the 16 patients showed a significant improvement in blood gases and respiratory rate within the first 24 h of treatment. Arterial oxygen tension (PaO2), PaO2/FIO2 (fractional inspired oxygen) ratio, and arterial oxygen saturation significantly improved after 1 h of treatment (43+/-10 vs 88+/-37 mmHg; 87+/-22 vs 175+/-64; 81+/-9 vs 95+/-4%, respectively) and continued to improve in the following 24 h (p < 0.01). Five patients died in the ICU following complications independent of the respiratory failure, while 11 were discharged from the ICU in stable condition after a mean stay of 4.3+/-2.4 days and were discharged in good condition from the hospital. CONCLUSIONS: NIV by nasal mask proved to be feasible and appropriate for the treatment of respiratory failure in hematologic patients who were at high risk of intubation-related complications.  相似文献   

5.
PURPOSE: To assess the short-term effects of pressure support ventilation in adult respiratory distress syndrome (ARDS), we studied 17 patients with moderate to severe ARDS using mandatory rate ventilation (MRV), a servocontrolled mode of PSV having respiratory rate as the targeted parameter. MATERIALS AND METHODS: Based on the duration of ARDS, the patients were divided into two groups: Group 1, early ARDS (duration up to 1 week), 10 patients; Group 2, intermediate ARDS (duration between 1 and 2 weeks). The patients were initially ventilated with assisted mechanical ventilation then with MRV, and finally with controlled mechanical ventilation. After a 20-minute period allowed for stabilization in each mode, ventilatory variables, gas exchange, hemodynamics, and patient's inspiratory effort were evaluated. RESULTS: During MRV blood gases, airway pressures and hemodynamic variables remained within acceptable limits in all patients. Compared with assisted mechanical ventilation, during MRV, patients of group 1 decreased their VT and V (from 0.64 +/- 0.04 to 0.42 +/- 0.03 L/sec) and increased their TI/TT (from 0.39 +/- 0.03 to 0.52 +/- 0.03). f did not change. PAO2 - PaO2 and QS/QT decreased (from 306 +/- 16 to 269 +/- 15 mm Hg, and from 20.2 +/- 1.4 to 17.5 +/- 1.1, respectively), while PaCO2 increased (from 44 +/- 3 to 50 +/- 3 mm Hg). On the contrary, patients of group 2 increased their VT (from 0.69 +/- 0.02 to 0.92 +/- 0.09 L), decreased their f (from 22.3 +/- 0.5 to 19.3 +/- 0.3 b/min), although they did not change their V and TI/TT. PAO2 - PaO2 and QS/QT remained stable. PaCO2 diminished (from 39 +/- 3 to 34 +/- 3 mm Hg). Pressure support level was higher in group 2 than in group 1 (29.4 +/- 3.0 v 19.8 +/- 2.9 cm H2O). CONCLUSIONS: We conclude that (1) PSV delivered by MRV may adequately ventilate patients with moderate to severe ARDS, preserving gas exchange and hemodynamics, at least for the short period tested; (2) early and intermediate ARDS respond in a different manner to MRV in terms of breathing pattern, gas exchange, and level of pressure assistance; and (3) patients with early ARDS are those who have an improvement in intrapulmonary oxygenation probably due, at least in part, to alveolar recruitment augmented by active diaphragmatic contraction.  相似文献   

6.
The aim of this mixed cross-sectional longitudinal study covering a total age range of 11-17 years, i.e. the entire pubertal growth period, was (1) to specify the changes in maximal breathing pattern during incremental exercise; (2) to determine what parts of the changes are due to anthropometric characteristics, physical fitness and inspiratory or expiratory muscle strength; and (3) to determine if the role of these variables is identical before, during and after pubertal growth spurt. This study was conducted in 44 untrained schoolboys separated into three groups, with an initial age of 11.2 +/- 0.2 years for group A, 12.9 +/- 0.25 years for group B, and 14.9 +/- 0.26 years for group C. These children were subsequently followed for 3 years, during the same time period each year. The maximal inspiratory and expiratory pressures (PI max and PE max) were used as an index of the respiratory muscle strength. During an incremental exercise test, maximal ventilation (VE max), tidal volume (VT max), breathing frequency (fmax), inspiratory and expiratory times (tI max and tE max) and mean inspiratory flow (VT/tI max) were measured at maximal oxygen uptake (VO2max). Our study showed that there was a marked increase with age in VE max, VT max, and VT/tI max, and no significant changes in fmax, tI max and tE max. PI max and PE max showed a general trend towards an increase between 11 and 17 years. The study of the linear correlations between maximal breathing pattern and the anthropometric characteristics, physical fitness and inspiratory or expiratory muscle strength showed that, in the three groups of children, (1) lean body mass was the major determinant of VE max, VT max and VT/tI max and the relationships were significantly different before, during and after the pubertal growth spurt; (2) physical fitness was the main determinant of tI max, tE max and fmax before and after the pubertal growth spurt; and (3) maximal respiratory strength did not play a significant role. In conclusion, this mixed cross-sectional longitudinal study showed, at maximal exercise, a significant increase in VE max during growth due only to a significant increase in VT max and VT/tI max, and that the relationships of anthropometric characteristics and physical fitness with maximal breathing pattern change during growth.  相似文献   

7.
BACKGROUND: The utility of the laryngeal mask airway during positive-pressure ventilation has yet to be determined. Our study was designed to assess whether significant leaks occurred with positive-pressure ventilation and if leaks were associated with gastroesophageal insufflation. METHODS: Forty-eight patients undergoing elective surgery were studied. After induction of anesthesia and paralysis, controlled ventilation was used with four different peak pressure settings in each patient (15, 20, 25, and 30 cmH2O). The order of ventilator pressure settings was assigned from a randomized block schedule. Data collected included inspiratory and expiratory volumes, qualitative assessments of gastroesophageal insufflation, and leak at the neck. After data collection during laryngeal mask use, the anesthesiologist intubated the trachea and measurements were repeated for tracheal tube ventilation. Leak was calculated by subtracting the expiratory from the inspiratory volume and expressed as a fraction of the inspiratory volume. RESULTS: Ventilation with the laryngeal mask airway was adequate at all ventilation pressures and comparable with tracheal tube ventilation. Leak fraction (mean +/- SD) at 15, 20, 25, and 30 cmH2O for laryngeal mask ventilation were 0.13 +/- 0.15, 0.21 +/- 0.18, 0.25 +/- 0.16 and 0.27 +/- 0.17, respectively, and 0.03 +/- 0.03, 0.05 +/- 0.03, 0.05 +/- 0.03 and 0.04 +/- 0.03, respectively, for tracheal tube ventilation. Leak fractions for ventilation with the laryngeal mask were consistently greater than those measured for tracheal tube ventilation at similar ventilation pressures. Leak fraction with laryngeal mask ventilation increased with increasing airway pressures, whereas leak with tracheal tube ventilation remained unchanged. The frequency of gastroesophageal insufflation ranged from 2.1% at a ventilation pressure of 15 cmH2O to 35.4% at 30 cmH2O. CONCLUSIONS: Ventilation using the laryngeal mask appears to be adequate if airway resistance and pulmonary compliance are normal. Gastroesophageal insufflation of air will become a problem in the presence increased ventilation pressure.  相似文献   

8.
We have previously shown (Am. J. Respir. Crit. Care Med. 1995;152:1248-1255) that in patients needing mechanical ventilation, the load imposed on the inspiratory muscles is excessive relative to their neuromuscular capacity. We have therefore hypothesized that weaning failure may occur because at the time of the trial of spontaneous breathing there is insufficient reduction of the inspiratory load. We therefore prospectively studied patients who initially had failed to wean from mechanical ventilation (F) but had successful weaning (S) on a later occasion. Compared with S, during F patients had greater intrinsic positive end-expiratory pressure (6. 10 +/- 2.45 versus 3.83 +/- 2.69 cm H2O), dynamic hyperinflation (327 +/- 180 versus 213 +/- 175 ml), total resistance (Rmax, 14.14 +/- 4.95 versus 11.19 +/- 4.01 cm H2O/L/s), ratio of mean to maximum inspiratory pressure (0.46 +/- 0.1 versus 0.31 +/- 0.08), tension time index (TTI, 0.162 +/- 0.032 versus 0.102 +/- 0.023) and power (315 +/- 153 versus 215 +/- 75 cm H2O x L/min), less maximum inspiratory pressure (42.3 +/- 12.7 versus 53.8 +/- 15.1 cm H2O), and a breathing pattern that was more rapid and shallow (ratio of frequency to tidal volume, f/VT 98 +/- 38 versus 62 +/- 21 breaths/min/L). To clarify on pathophysiologic grounds what determines inability to wean from mechanical ventilation, we performed multiple logistic regression analysis with the weaning outcome as the dependent variable. The TTI and the f/VT ratio were the only significant variables in the model. We conclude that the TTI and the f/VT are the major pathophysiologic determinants underlying the transition from weaning failure to weaning success.  相似文献   

9.
We evaluated the effect of global inspiratory muscle fatigue on ventilation and respiratory muscle control during CO2 rebreathing in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. CO2 response curves were measured before and after fatigue. During CO2 rebreathing, global fatigue caused a decreased tidal volume (VT) and an increased breathing frequency but did not change minute ventilation, duty cycle, or mean inspiratory flow. Both esophageal and transdiaphragmatic pressure swings were significantly reduced after global fatigue, suggesting decreased contribution of both rib cage muscles and diaphragm to breathing. End-expiratory transpulmonary pressure for a given CO2 was lower after fatigue, indicating an additional decrease in end-expiratory lung volume due to expiratory muscle recruitment, which leads to a greater initial portion of inspiration being passive. This, combined with the reduction in VT, decreased the fraction of VT attributable to inspiratory muscle contribution; therefore the inspiratory muscle elastic work and power per breath were significantly reduced. We conclude that respiratory control mechanisms are plastic and that the respiratory centers alter their output in a manner appropriate to the contractile state of the respiratory muscles to conserve the ventilatory response to CO2.  相似文献   

10.
To examine the influence of continuous positive airway pressure (CPAP) therapy on respiratory center drive in patients with obstructive sleep apnea syndrome (OSAS), 20 normocapnic OSAS patients (group 0) and 20 simple snoring patients were studied. In the first night, diagnostic polysomnography (PSG) was performed. Before and after PSG monitoring, mouth occlusion pressure (P0.1), tidal volume (VT), minute ventilation (VE), respiratory rate (RR), inspiratory time (Ti), expiratory time (Te), total cycle duration (Ttot), inspiratory duty cycle (Ti/Ttot), mean inspiratory flow (VT/Ti) and effective inspiratory impedance (P0.1/VT/Ti, Ieff) were measured while they were breathing room air. In the following night the OSAS patients were treated with nasal CPAP and PSG monitoring and the above mentioned measurements were repeated. The results showed that pre-PSG values of P0.1, RR and P0.1/VT/Ti in the OSAS patients were significantly higher than those in the snoring patients, while VT, Ti, Te and Ttot values were lower. In the first night, the post-PSG P0.1 value in the OSAS patients increased markedly as compared with the pre-PSG. After overnight nasal CPAP therapy, the respiratory disorder index in the OSAS patients decreased markedly, the nadir SaO2 increased markedly, but the post-PSG P0.1 value did not increase significantly. It is concluded that, before sleep, OSAS patients exhibit a higher respiratory drive and a shallow and frequent breathing pattern as compared with simple snoring patients. After nocturnal sleep, the respiratory drive of OSAS patients increases significantly, the breathing pattern becomes more shallow and frequent. Nasal CPAP may effectively relieve the sleep apnea and hypopnea as well as the resulting hypoxemia and therefore correct the changes in breathing pattern and respiratory drive through nocturnal sleep in patients with OSAS.  相似文献   

11.
OBJECTIVE: To examine variables associated with postextubation respiratory distress in chronic obstructive pulmonary disease (COPD) patients. DESIGN: Prospective, clinical investigation. SETTING: Intensive care unit of a university hospital. PATIENTS: Forty COPD patients, considered ready for extubation. MEASUREMENTS AND MAIN RESULTS: We recorded, from the digital display of a standard ventilator, breathing frequency (f), tidal volume (VT) and f/VT for the respiratory pattern, airway occlusion pressure at 0.1 s (P0.1) for the respiratory drive and measured blood gases: i) before extubation, following 30 min of a 6 cm H2O pressure support (PS) ventilation trial, ii) 1 h after extubation, at the 30th min of a face mask 4 cm H2O PS ventilation trial. According to the weaning outcome, the patients were divided into two groups: respiratory distress, and non-respiratory distress within 72 h of the discontinuation of mechanical ventilation. The respiratory distress was defined as the combination of f more than 25 breaths/min, an increase in PaCO2 of at least 20% compared with the value measured after extubation, and pH lower than 7.35. We determined whether those patients who developed respiratory distress after extubation differed from those who did not. Respiratory pattern data and arterial blood gases recorded, either before or after extubation, and P0.1 recorded before extubation, were inadequate to differentiate the two groups. Only P0.1 recorded 1 h after the discontinuation of mechanical ventilation differentiated the patients who developed respiratory distress from those who did not (4.2+/-0.9 vs 1.8+/-0.8, p < 0.01). CONCLUSIONS: P0.1 recorded after extubation may be a good indicator of postextubation respiratory distress. Measuring P0.1 and/or the analysis of the evolution of this parameter could facilitate decisions during the period following extubation.  相似文献   

12.
AIMS: The aim of this study was to assess inspiratory performance at rest and during exercise in patients with chronic heart failure in comparison with healthy controls using a non-invasive index: the tension-time index of inspiratory muscles (TTMUS). METHODS: We studied 13 patients with chronic heart failure (57 +/- 7 years) and 10 control subjects (58 +/- 6 years) at rest and during an incremental maximal exercise test. Measurements included breathing pattern (inspiratory time, total time of respiratory cycle, minute ventilation, tidal volume and respiratory frequency), mouth occlusion pressure and mean inspiratory pressure (calculated as follows: 5 x mouth occlusion pressure x inspiratory time). The maximal inspiratory pressure was measured at rest. TTMUS was calculated from the equation: TTMUS = PI/PIMAX x TI/TTOT, where PI/PIMAX is the ratio of mean inspiratory pressure to maximal inspiratory pressure and TI/TTOT is the ratio of mean inspiratory time to total time of the respiratory cycle. RESULTS: At rest, the results in patients showed non-significantly higher mouth occlusion pressure, lower maximal inspiratory pressure (P < 0.001), and a higher ratio of mean inspiratory pressure to maximal inspiratory pressure (P < 0.01). There was no difference in the breathing pattern. TTMUS was thus significantly higher in the patients with chronic heart failure (P < 0.001). At maximal exercise (77 +/- 16 W for patients with chronic heart failure vs 142 +/- 27 W for controls, P < 0.001), the ratio of mean inspiratory time to total time of respiratory cycle, the mouth occlusion pressure and the ratio of mean inspiratory pressure to maximal inspiratory pressure were not different. TTMUS was thus comparable in the two groups. During exercise, at comparable workloads (20, 40 and 60 W), the patients showed higher mouth occlusion pressure (P < 0.01) and a higher ratio of mean inspiratory pressure to maximal inspiratory pressure (P < 0.001), whereas the ratio of mean inspiratory time to total time of the respiratory cycle was similar. TTMUS was thus higher in the patients at each workload (P < 0.05). CONCLUSION: This study shows that the determination of TTMUS at rest and during exercise allows the observation of alterations in inspiratory muscle performance as a result of both reduced inspiratory strength, as measured by the maximal inspiratory pressure, and increased ventilatory drive, as reflected by the mouth occlusion pressure in patients with chronic heart failure. The non-invasiveness of this new index is an additional argument for its use in a clinical setting.  相似文献   

13.
STUDY OBJECTIVES: The purpose of the present study was to compare in awake and asleep healthy subjects, under nasal intermittent positive pressure ventilation (nIPPV) with a two-level intermittent positive pressure device (two-level nIPPV), the efficacy of the controlled and spontaneous modes, and of different ventilator settings in increasing effective minute ventilation (VE). PARTICIPANTS: Eight healthy subjects were studied. SETTING: In the controlled mode, inspiratory positive airway pressure (IPAP) was kept at 15 cm H2O, expiratory positive airway pressure (EPAP) at 4 cm H2O, and the inspiratory/expiratory (I/E) time ratio at 1. The respirator frequencies were 17 and 25/min. In the spontaneous mode experiment, IPAP was started at 10 cm H2O and progressively increased to 15 and 20 cm H2O; EPAP was kept at 4 cm H2O. MEASUREMENTS AND RESULTS: We measured breath by breath the effective tidal volume (VT with respiratory inductive plethysmography), actual respiratory frequency (f), and effective VE. Using the controlled mode, effective VE was significantly higher on nIPPV than during spontaneous unassisted breathing, except in stage 2 nonrapid eye movement sleep at 17/min of frequency; increases in f from 17 to 25/min led to a significant decrease in VT reaching the lungs, during wakefulness and sleep; effective VE was higher at 25 than at 17/min of frequency only during sleep; periodic breathing was scarce and apneas were never observed. Using the spontaneous mode, with respect to awake spontaneous unassisted breathing, two-level nIPPV at 10 and 15 cm H2O of IPAP did not result in any significant increase in effective VE either in wakefulness or in sleep; only IPAP levels of 20 cm H2O resulted in a significant increase in effective VE; during sleep, effective VE was significantly lower than during wakefulness; respiratory rhythm instability (ie, periodic breathing and central apneas) were exceedingly common, and in some subjects extremely frequent, leading to surprisingly large falls in arterial oxygen saturation. CONCLUSIONS: It appears that two-level nIPPV should be used in the controlled mode rather than in the spontaneous mode, since it seems easier to increase effective VE with a lower IPAP at a high frequency than at a high pressure using the spontaneous mode. We suggest that the initial respirator settings in the controlled mode should be an f around 20/min, an I/E ratio of 1, 15 cm H2O of IPAP, and EPAP as low as possible.  相似文献   

14.
OBJECTIVE: To assess the oxygen cost of breathing with either pressure-support ventilation (PSV) or biphasic intermittent positive airway pressure ventilation (BIPAP). DESIGN: Prospective, randomized, crossover study. SETTING: Medical intensive care unit of a university hospital. PATIENTS: Twenty clinically stable and spontaneously breathing patients after long-term mechanical ventilation. INTERVENTIONS: Patients were randomized to start on either PSV or BIPAP, and measurements were performed after an adaptation period of 30 mins. Immediately after, the ventilatory mode was changed and after another 30-min adaptation period, the same measurements were performed. MEASUREMENTS AND MAIN RESULTS: Indirect calorimetry was performed during each ventilatory mode for a period of 30 mins. Oxygen consumption, energy expenditure, CO2 production, and respiratory quotient did not differ significantly between the two ventilatory modes, regardless of the patients' randomization. There were no statistically significant differences with regard to respiratory rate, minute volume, and blood gas analysis. All patients tolerated both ventilatory modes without any signs of discomfort. CONCLUSIONS: Pressure support ventilation and BIPAP are both used for weaning patients gradually from the ventilator. BIPAP may be advantageous in patients not breathing sufficiently with PSV, since no patient effort is necessary with use of this ventilatory mode.  相似文献   

15.
Although negative pressure assisted ventilation with an assist-control mode may have a potential therapeutic role in the treatment of severe dyspnoea, the effects of negative pressure assisted ventilation with the assist-control mode on dyspnoea and breathing patterns have not been examined. We examined the effects of negative pressure assisted ventilation with the assist-control mode on dyspnoea and breathing patterns produced by a combination of resistive loading and hypercapnia in nine healthy subjects breathing spontaneously. Subjects were asked to rate their sensation of respiratory discomfort using a visual analogue scale. Negative pressure assisted ventilation caused a significant reduction in sensation of respiratory discomfort from a visual analogue scale score of 74 (55-91) (median (range)) before negative pressure assisted ventilation to 34 (15-53) during negative pressure assisted ventilation (p<0.01). During negative pressure assisted ventilation, there were significant changes in breathing patterns characterized by an increase in tidal volume and a decrease in respiratory frequency, while neither minute ventilation nor end-tidal carbon dioxide tension changed. Our results indicate that negative pressure assisted ventilation with the assist-control mode is effective in relief of dyspnoea and that negative pressure assisted ventilation influences the control of breathing to minimize respiratory discomfort.  相似文献   

16.
Assisted ventilation with pressure support (PSV) or proportional assist (PAV) ventilation has the potential to produce periodic breathing (PB) during sleep. We hypothesized that PB will develop when PSV level exceeds the product of spontaneous tidal volume (VT) and elastance (VTsp . E) but that the actual level at which PB will develop [PSV(PB)] will be influenced by the DeltaPCO2 (difference between eupneic PCO2 and CO2 apneic threshold) and by DeltaRR [response of respiratory rate (RR) to PSV]. We also wished to determine the PAV level at which PB develops to assess inherent ventilatory stability in normal subjects. Twelve normal subjects underwent polysomnography while connected to a PSV/PAV ventilator prototype. Level of assist with either mode was increased in small steps (2-5 min each) until PB developed or the subject awakened. End-tidal PCO2, VT, RR, and airway pressure (Paw) were continuously monitored, and the pressure generated by respiratory muscle (Pmus) was calculated. The pressure amplification factor (PAF) at the highest PAV level was calculated from [(DeltaPaw + Pmus)/Pmus], where DeltaPaw is peak Paw - continuous positive airway pressure. PB with central apneas developed in 11 of 12 subjects on PSV. DeltaPCO2 ranged from 1.5 to 5.8 Torr. Changes in RR with PSV were small and bidirectional (+1.1 to -3.5 min-1). With use of stepwise regression, PSV(PB) was significantly correlated with VTsp (P = 0.001), E (P = 0.00009), DeltaPCO2 (P = 0.007), and DeltaRR (P = 0.006). The final regression model was as follows: PSV(PB) = 11.1 VTsp + 0.3E - 0.4 DeltaPCO2 - 0.34 DeltaRR - 3.4 (r = 0.98). PB developed in five subjects on PAV at amplification factors of 1.5-3.4. It failed to occur in seven subjects, despite PAF of up to 7.6. We conclude that 1) a PCO2 apneic threshold exists during sleep at 1.5-5.8 Torr below eupneic PCO2, 2) the development of PB during PSV is entirely predictable during sleep, and 3) the inherent susceptibility to PB varies considerably among normal subjects.  相似文献   

17.
OBJECTIVE: To compare the efficacy of positive pressure ventilation applied through a mask versus an endotracheal tube, using anesthetized/paralyzed foals as a model for foals with hypoventilation. ANIMALS: Six 1-month-old foals. PROCEDURE: A crossover design was used to compare the physiologic response of foals to 2 ventilatory techniques, noninvasive mask mechanical ventilation (NIMV) versus endotracheal mechanical ventilation (ETMV), during a single period of anesthesia and paralysis. Arterial pH, PaO2, PaCO2, oxygen saturation, end-tidal CO2 tension, airway pressures, total respiratory system resistance, resistance across the upper airways (proximal to the midtracheal region), and positive end-expiratory pressures (PEEP) were measured. Only tidal volume (VT; 10, 12.5, and 15 ml/kg of body weight) or PEEP (7 cm of H2O) varied. RESULTS: Compared with ETMV, use of NIMV at equivalent VT resulted in PaCO2 and pH values that were significantly higher, but PaO2 was only slightly lower. Between the 2 methods, peak airway pressure was similar, but peak expiratory flow was significantly lower and total respiratory resistance higher at each VT for NIMV. Delivery of PEEP (7 cm of H2O) was slightly better for ETMV (7.1 +/- 1.3 cm of H2O) than for NIMV (5.6 +/- 0.6 cm of H2O). CONCLUSION: These data suggest that use of NIMV induces similar physiologic effects as ETMV, but the nasal cavities and mask contribute greater dead space, manifesting in hypercapnia. Increasing the VT used on a per kilogram of body weight basis, or the use of pressure-cycled ventilation might reduce hypercapnia during NIMV. CLINICAL RELEVANCE: Use of NIMV might be applicable in selected foals, such as those with hypoventilation and minimal changes in lung compliance, during weaning from endotracheal mechanical ventilation, or for short-term ventilation in weak foals.  相似文献   

18.
The independent and interactive effect of feedback related to volume, CO2, inspiratory flow, and arousal state on the regulation of respiratory rate in mechanically ventilated humans is not well characterized. We examined the rate response of eight normal volunteers during both quiet wakefulness and non-rapid-eye-movement (NREM) sleep, while mechanically ventilated through a nasal mask in an assist/control mode with a machine back-up rate of 2 breaths/min. Tidal volume (VT) was set slightly above spontaneous VT and then increased by 0.2 L every 3 min up to 1.8 L or 25 ml/kg. Either an inspiratory flow of 40 L/min or an inspiratory time of 2 s (iso-T(I)) was set, with CO2 added (F(I)CO2 > 0) or F(I)CO2 = 0. Measurements were made during both quiet wakefulness and NREM sleep. We found that as VT increased, the respiratory rate decreased; the rate decline was observed during wakefulness and sleep, and under isocapnic as well as hypocapnic conditions. Increasing inspiratory flow raised the respiratory rate during wakefulness and NREM sleep. During NREM sleep, hypocapnia resulted in wasted ventilator trigger efforts. In summary, both VT and inspiratory flow settings affect the respiratory rate, and depending on state, can affect CO2 homeostasis. Ventilator settings appropriate for wakefulness may cause ventilatory instability during sleep.  相似文献   

19.
OBJECTIVE: 1) To compare the haemodynamic tolerance of ACV and PSV in patients mechanically ventilated after orthotopic liver transplantation; 2) to compare patients comfort during ACV and PSV. DESIGN: Prospective randomized cross-over study. SETTING: General ICU of the University of Rome "La Sapienza". PATIENTS: Eighteen patients admitted in ICU after orthotopic liver transplantation. MEASUREMENT AND RESULTS: Haemodynamic, oxygen transport and blood gas data were compared during an ACV and PSV trial (30'). A statistically significant decrease of mean pulmonary and systemic arterial pressure, PCOP, LVSWI, occurred during the PSV trial. PaO2 and DO2I decreased during PSV, but were still in supranormal range; 16 out of 18 patients described PSV as more comfortable. CONCLUSIONS: ACV and PSV provided a comparable haemodynamic tolerance in our patients, although during PSV the PaO2 was slightly decreased, probably due to decreased mean airway pressure (from 9.3 +/- 1.2 cmH2O during ACV to 6.6 +/- 1 cmH2O during PSV). PSV can be considered as a good alternative to the standard weaning techniques following orthotopic liver transplantation.  相似文献   

20.
In kyphoscoliosis (KS), lung volumes are reduced, respiratory elastance and resistance are increased, and breathing pattern is rapid and shallow, attributes that may contribute to defense of tidal volume (VT) in the face of inspiratory resistive loading. The control of ventilation of 12 anesthetized patients about to undergo corrective spinal surgery was compared to that of 11 anesthetized patients free of cardiothoracic disease during quiet breathing and the first breath through one of three linear resistors. Mean forced vital capacity (FVC) of the KS group was 48% that of the controls (C). Passive elastance (Ers) and active elastance and resistance (E'rs and R'rs, respectively) were computed according to previously described techniques (Behrakis PK, Higgs BD, Baydur A, Zin WA, Milic-Emili J (1983) Active inspiratory impedance in halothane-anesthetized humans. J Appl Physiol 54: 1477-1481). Baseline tidal volume VT, inspiratory duration Tl, expiratory duration TE, duration of total breathing cycle TT, and inspiratory duty cycle TI/TT were significantly reduced, while VE was slightly decreased in the KS. Ers, E'rs, and R'rs, were, respectively, 72, 69, and 89% greater in the KS. Driving pressure (Pmus) was derived from the equation of motion, using active values of respiratory elastance. With resistive loading, there was greater prolongation of TI in the C, while percent reduction in VT and minute ventilation VE was less in KS. Compensation in both groups was achieved through three changes in the Pmus waveform. (1) Peak amplitude increased. (2) The duration of the rising phase increased. (3) The rising Pmus curve became more concave to the time axis. These changes were most marked with application of the highest resistance in both groups. Peak driving pressure and mean rate of rise of Pmus were greater in the KS. Increased intrinsic impedance, Pmus, and differences in changes in neural timing in anesthetized kyphoscoliotics contribute to modestly greater VT defense, compared to that of anesthetized subjects free of cardiorespiratory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号