首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以实现地面目标的快速、高分辨率成像为目的,本文提出了一种基于压缩感知和协作通信技术的解决方案。在分析压缩感知理论和传统协作MIMO雷达成像算法的基础上,提出了基于匹配滤波器的协作MIMO雷达回波信号的稀疏表示方法和用于恢复重构的基函数,并建立了基于压缩转发的协作MIMO雷达系统模型。该系统主要由收发雷达、转发节点和压缩感知成像处理中心组成,转发节点利用模拟/信息转换(AIC)测量框架将雷达回波数据压缩后转发,压缩感知成像处理中心接收到各转发节点转发的数据后,利用正交匹配追踪算法(OMP)进行距离向压缩和方位向压缩,从而实现快速、高分辨率成像。仿真结果表明,该方法比传统MIMO雷达对各转发节点的传输负荷要求低,成像速度快,目标旁瓣低,成像效果好。   相似文献   

2.
正交匹配追踪(OMP)算法中迭代次数严格依赖信号的稀疏度K值,迭代次数选取适当会重构出高精确的图像,反之则会对图像重构质量造成严重影响.针对这一问题,提出了一种根据残差值的相对极差来确定最佳迭代次数的新方法.该方法要求在同一次迭代中对一幅图像的所有列同时进行迭代计算,根据极差的相对差值与门限值比较来确定最佳迭代次数,从而达到提高重构精度,消除对稀疏度K值依赖的目的.理论分析和仿真结果表明,改进的OMP算法比原有算法有更理想的重构效果,有更高的重构精度.  相似文献   

3.
针对正交匹配追踪(OMP)算法需设置冗余的支撑集,导致信号重构时运算量变大、抗噪性能和重构性能变差等问题,提出了一种基于贝叶斯模型的OMP(BOMP,bayesian orthogonal matching pursuit)算法。首先利用贝叶斯检验模型和OMP算法合理去除支撑集中的冗余部分,得到相等或略大于信号真实稀疏度的支撑集;其次构建BOMP的信号重构算法;最后将算法应用于ISAR成像。仿真和实测数据结果表明,由于本文算法可近似估计到信号的真实稀疏度,因此具有更好的抗噪性能以及重构精度,相应的运算量也明显减少。  相似文献   

4.
秦国领  郑森  王康  李梓博 《电讯技术》2016,56(8):856-861
针对当前压缩感知信号检测算法没有充分利用稀疏系数幅值信息的不足,提出了一种新的检测算法。从正交匹配追踪算法切入,通过深入分析归一化残差的变化信息,提出归一化余差概念,建立了一种基于归一化残差和归一化余差二维判决的信号检测算法。仿真结果表明,算法的有效检测阈值区间随着信噪比的降低而不断减小,且在信噪比为-8 dB、压缩比为0.25时,该算法的检测概率仍能满足要求,具备较好的适应性。  相似文献   

5.
现阶段,我国应用的检测算法大多以特征量的迭代过程为研究对象,这种检测方法只适用于感知信号存在时,并不适用于全部的信号测算工作。本文将提出感知信号检测的改进方法和正交匹配追踪的研究方案,以降低信号特征量的变化区间,提高感知信号检测结果的准确性,提高检测的成功率。  相似文献   

6.
基于压缩感知理论的图像重构技术   总被引:4,自引:0,他引:4  
通过CS理论在工程应用上典型的正交匹配追踪算法,实现了一维信号和二维图像的精确重构,针对该方法中出现对整幅图像进行采样计算时需要大量的观测矩阵存储空间,并且重构过程中耗费了大量的时间等问题,提出了一种基于OMP算法的改进方案,将图像进行分块压缩感知。通过实验分析,以上问题得到了解决,重构图像的质量在没有增加计算复杂度的前提下也得到了提高。  相似文献   

7.
基于正交匹配追踪算法的语音信号重构研究   总被引:1,自引:0,他引:1  
压缩感知理论是近年来提出的一种新兴的基于信号稀疏性的采样理论。正交匹配追踪算法是其中一种典型的重构方法,文中针对语音信号重构中存在的不足,采用正交匹配追踪算法对语音信号进行信号重构,相比于传统的压缩感知的重构算法更加地适用于对含噪语音、重构语音质量会更高,去噪效果也会更明显。为语音信号CS性能的基础性的研究提供了参考。  相似文献   

8.
信号压缩重构的正交匹配追踪类算法综述   总被引:6,自引:0,他引:6  
杨真真  杨震  孙林慧 《信号处理》2013,29(4):486-496
压缩感知(Compressed sensing, CS)技术是近几年出现的一种新兴的信号采样和压缩技术,基于该理论所获得的原始信号采样值,不仅数量大大低于基于传统的Nyquist准则的采样值,而且CS技术还具有对未知信号边感知边压缩的特性。重构算法的设计是CS技术的核心,成为学者研究的重点。本文在对国内外已经出现的重构算法进行系统地研究后,在深入地研究了贪婪追踪算法和其重构模型的基础上,给出了正交匹配追踪(Orthogonal Matching Pursuit, OMP)类算法的基本原理、优缺点及针对各种算法的缺点的改进方案。此外,为了读者更好地定位OMP类算法,本文还简要介绍了其他几种经典的重构算法。最后,把各种算法应用于图像重构,通过仿真实验分析了各种算法的重构性能、鲁棒性和复杂度,并进一步验证了各种算法的优缺点。   相似文献   

9.
压缩感知理论的提出极大促进了信号等领域的发展。为了精确的恢复原始信号,本文在正交匹配追踪算法的基础上,提出一种改进的余弦相似正交匹配追踪算法,该算法结合广义选择原子的思想,加入余弦相似系数,进一步提高对原子相关性选择,从而提高信号重构的精度。并通过在不同稀疏度及压缩比下进行信号重构,结合精确重构率对不同信号进行重构实验。结果表明,提出的改进算法在重构精度上具有显著的优越性。  相似文献   

10.
刘学文  肖嵩  王玲  薛晓 《信号处理》2017,33(2):178-184
正交匹配追踪系列算法中,每次迭代在原子库中选择和残差匹配的多个原子是主流的改进方向,但对多原子的选择标准却鲜有深入研究,一般是选择原子库中与残差相关系数中最大的K个原子,或者选择所有大于某一阈值的原子。本文以正交匹配追踪算法为原型,运用统计学方法,研究了相邻两次迭代中与残差相关系数最大的原子之间的关系,得出了其相关系数具有区间性的结论,这对一次迭代选择多个原子具有指导意义。该结论可以支撑对下一步迭代中的原子进行高概率预测。基于此,本文提出了迭代预测正交匹配追踪算法,实验结果表明,相对于其他匹配追踪算法,其在保证重构精度未降低的情况下,耗时有较大幅度降低。   相似文献   

11.
针对A*正交匹配追踪(A*OMP)算法计算复杂高,且不能利用信号的结构稀疏性这一缺陷,该文提出了块A*OMP算法并将其用于解决分布式压缩感知中的信号联合重构问题。该算法用原子块取代单个原子作为搜索树中的节点,在计算路径代价时用搜索树中所有路径的最大长度取代信号的稀疏度。然后在块A*OMP算法的基础上,选择与残差矩阵投影误差最小的原子块作为新的节点,得到了一种用于解决MMV(Multiple Measurement Vector, MMV)问题的块A*OMP算法,并利用该算法对相邻区域内的多个传感器所测的温度信号进行了联合重构。实验结果表明,该算法的重构性能优于MMV正交匹配追踪(OMPMMV)算法。  相似文献   

12.
光纤光栅传感在实际的应用中,存在采样信号数据丢失问题,该文提出一种改进重构算法的压缩感知信号修复方法。根据缺损信号特征,选取与之匹配的观测矩阵与稀疏字典。基于压缩感知重构算法,提出匹配光纤布拉格光栅(FBG)信号特征的自适应阈值函数,同时增设阈值判决条件。分析了信号修复与传感测量精度的关系,采用重建信号的寻峰误差来验证信号的修复效果。仿真结果显示,在FBG光谱数据缺失30%的情况下,恢复信号的平均相对误差为10-6;均方根误差为0.0707,比对比算法低0.0232~0.1159;且系统平均运行时间远低于对比算法,表明采用该文算法修复缺损的FBG传感信号具有较高的重构精度与较好的实用性。  相似文献   

13.
在压缩感知研究中,信号在不同变换下的稀疏域好坏是影响信号重构性能的重要因素。该文基于语音信号的线性预测分析(LPC),提出一种结合了LPC分析和差分变换的语音稀疏化联合变换方法,通过正交匹配追踪算法(OMP)优化算法重构语音信号,与FFT和LPC两种稀疏化方法进行了对比分析。实验表明,在压缩比大于0.4时,联合变换法重构的语音信号性能明显优于另外两种方法。也即在相同重构性能并兼顾语音质量的情况下,联合变换法具有较小的压缩比,因而具有较好的压缩性能。采用PESQ语音质量评测方法对3种稀疏化算法重构的语音进行平均意见值(MOS)对比,联合变换法也具有较好的性能。  相似文献   

14.
基于压缩感知的连续场景稀疏阵列SAR三维成像   总被引:1,自引:0,他引:1  
该文提出一种基于压缩感知的连续场景稀疏阵列SAR 3维成像方法。利用多孔径观测结构,使SAR复图像在频域和变换域具备稀疏性,将压缩感知(CS)方法引入频域和变换域的信号处理过程中,实现高分辨率3维成像,获得与满阵成像结果相同的成像质量。该文方法适用于随机稀疏阵列,可减少对高程向阵型的设计约束,为孔径综合处理后无法获得满阵条件下实现对地成像提供了可能。仿真试验验证了该文方法的有效性。  相似文献   

15.
前向后向匹配追踪(FBP)算法作为一个新颖的两阶段贪婪逼近算法,因为较高的重构精度和不需要稀疏度作为先验信息的特点,受到了人们的广泛关注。然而,FBP算法必须运行更多的时间才能得到更高的精度。鉴于此,该文提出加速前向后向匹配追踪(AFBP)算法。该算法利用每次迭代中候选支撑集的信息,实现对已删除原子的再次加入,以此减少算法迭代次数。通过不同非零项分布的稀疏信号和稀疏图像的仿真结果表明,相对于FBP算法,该文提出的方案在不降低重构精度的同时,大幅降低了算法运行时间。  相似文献   

16.
基于压缩感知的随机噪声成像雷达   总被引:1,自引:0,他引:1  
近年来提出的压缩感知(CS)理论指出可以从很少的采样点中以很大的概率准确重建原始的未知稀疏信号。该文将压缩感知与随机噪声雷达相结合,提出了基于压缩感知的随机噪声雷达,并给出了该雷达系统的基本原理框图,从理论上证明了基于压缩感知的随机噪声雷达的回波观测矩阵具有很好的等容性质,在目标场景稀疏或可以稀疏表示时,基于压缩感知的随机噪声雷达可以采集远小于常规随机噪声雷达成像所需的回波数据并能实现准确成像,最后通过仿真实验验证了该文的结论。  相似文献   

17.
基于压缩感知的稀疏阵列MIMO雷达成像方法   总被引:1,自引:0,他引:1  
针对MIMO雷达对空目标单次快拍成像时天线数目较多问题,该文提出了一种稀疏阵列MIMO雷达的成像方法。首先分析了MIMO雷达天线的稀疏布阵方式,其次结合压缩感知理论具体阐述了稀疏阵列MIMO雷达的成像方法。该方法不仅能够对运动目标实现单次快拍成像,避免了目标机动带来的运动补偿难题,同时又能够大幅减少MIMO雷达的天线规模,便于工程实现。最后利用仿真实验验证了所提方法的有效性。  相似文献   

18.
针对各种环境声对声音事件识别的影响,该文提出一种基于优化的正交匹配追踪(Orthogonal Matching Pursuit, OMP)声音事件识别方法。首先,利用OMP稀疏分解并重构声音信号,保留声音信号的主体部分,减小噪声的影响。其中,使用粒子群(Particle Swarm Optimization, PSO)算法优化搜索最优原子,实现OMP的快速稀疏分解。接着,对重构声音信号提取Mel频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCCs),与OMP时-频特征和基频(PITCH)特征,组成优化OMP的复合特征。最后,通过优化OMP复合特征,使用随机森林(Random Forests, RF)对40种声音事件在不同环境不同信噪比下进行识别。实验结果表明,优化OMP复合特征结合RF的方法能有效地识别各种环境下的声音事件。  相似文献   

19.
针对弱观测条件下雷达信号存在数据残损的问题,该文提出一种基于变分模态分解和压缩感知(VMD-CS)的雷达信号重构方法。首先通过变分模态分解对采样数据进行降解去噪处理,其次在压缩感知框架下构造观测矩阵、稀疏表示字典矩阵,然后基于正交追踪匹配(OMP)算法重构出稀疏表示向量。在此基础上利用离散余弦稀疏矩阵重构信号,实现对残损雷达信号的数据重构。在连续丢失数据和随机丢失数据两种情况下,对实际采集的线性调频(LFM)雷达信号进行仿真实验。实验结果表明:在数据连续丢失率不高于30%或随机丢失率不高于60%的情况下,该文方法能有效重构雷达信号,在时域、频域和瞬时频率上能够准确逼近原始信号。  相似文献   

20.
基于成像场景散射强度稀疏表示的3维雷达成像结果对目标的外形几何细节体现较差,不利于目标识别。该文首先分析了目标在成像场景内散射强度的结构化特征,然后以散射点梯度信息进行了结构化稀疏表示,构建了基于目标散射强度梯度变化的结构化稀疏重构模型,最后通过改进的联合正交匹配追踪算法重构出目标3维图像。实验结果表明,该方法具有较好...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号