共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
粒子群优化算法(PSO)是一种基于群智能的随机优化算法,其理论简单,参数少,易于实现,可用于解决大量非线性、不可微和多峰值的复杂问题。本文介绍了粒子群算法的基本原理和基本流程,研究了如何将这种方法应用于阵列天线的方向图综合上,给出了PSO 算法在阵列天线方向图综合的应用实例,结果表明粒子群算法在阵列天线方向图综合上有很好的应用前景。 相似文献
3.
4.
5.
基于停滞检测粒子群算法的阵列天线方向图综合 总被引:1,自引:0,他引:1
在线性递减权重粒子群算法的基础上提出了一种改进的粒子群优化算法.新算法采用了合适的邻域结构,通过停滞检测以及对全局最佳粒子的微扰改善了算法的优化速度和收敛特性.仿真结果表明:将此算法应用于天线方向图综合中,在多零点和低旁瓣约束情况下可以取得良好的优化效果. 相似文献
7.
基于改进粒子群算法的天线方向图综合技术 总被引:1,自引:0,他引:1
针对基本粒子群算法的早熟收敛、易收敛于局部极值的特点,提出一种改进的粒子群优化算法,采用对全局最佳微扰和惯性权重跳变阈值的设置改善了算法的优化速度和收敛精度。经过对一系列测试函数的计算,证明该方法具有良好的优化效果。最后,给出了该方法应用于阵列天线方向图综合中的模型和仿真实例。 相似文献
8.
为了克服粒子群优化算法早熟收敛,本文提出了一种改进的小波变异粒子群优化算法,由于该算法每次迭代时以一定的概率选中粒子进行小波变异扰动,能够克服算法后期易发生早熟收敛和陷入局部最优的缺点。同时将改进的算法应用于天线阵列方向图综合问题中,综合效果好于现有文献。 相似文献
9.
10.
11.
12.
根据粒子群优化(PSO)算法的社会心理学指导思想并结合自适应FIR滤波器的特点,设计了合适的惯性项、认知项与社会项表达式,并将之应用于组合自适应滤波器的子自适应滤波器更新中,提出了基于PSO算法思想的组合自适应滤波算法,分析了新算法的计算复杂度。理论分析与不同条件下的自适应系统辨识仿真结果表明,新算法可以在不明显提高计算量的条件下较好地平衡自适应滤波器的稳态失调与跟踪能力,其收敛性能优于其它几种较新的LMS算法。 相似文献
13.
粒子群优化算法对于多维函数的最优解搜索存在前期易陷入局部最优,后期收敛速度缓慢的问题.将改进的k-中心点聚类分析与PSO相结合提出了一种混合粒子群算法KM-PSO,用于多峰值问题的优化.在算法中,利用k-中心点聚类分析方法将粒子群划分成若干个子群,结合PSO的隐含并行搜索的优势增强了寻优性能.不仅增加了粒子间的信息交换,抑制了早熟收敛,还提高了全局寻优速度和计算精度.仿真实验结果表明,KM-PS0性能优于基本粒子群优化算法. 相似文献
14.
15.
合理高效地优化调度救灾物资对提升地震应急救援效果具有重要意义。地震应急需要同时兼顾时效性、公平性和经济性等相互冲突的多个调度目标。该文对地震应急物资调度问题建立了带约束的3目标优化模型,并设计了基于进化状态评估的自适应多目标粒子群优化算法(AMOPSO/ESE)来求解Pareto最优解集。然后根据“先粗后精”的决策行为模式提出了由兴趣最优解集和邻域最优解集构成的Pareto前沿来辅助决策过程。仿真表明该算法能有效地获得优化调度方案,与其他算法相比,所得Pareto解集在收敛性和多样性上具有性能优势。
相似文献16.
17.
一种改进的自适应进化粒子群优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法容易陷入局部极值点以及进化后期收敛慢和优化精度较差等缺点,提出一种改进的自适应进化算法.该算法引入信息扩散函数,根据不同粒子的位置及对应适应值与当前群体最佳位置和最佳适应值的关系,控制粒子变尺度向群体当前最佳位置移动;基于多样性反馈机制动态调节惯性权值和控制粒子群的微变异.通过复杂基准函数的仿真优化结果表明,改进算法具有抑制早熟、收敛速度快、求解精度高的特点. 相似文献
18.
19.
一种改进的粒子群和K均值混合聚类算法 总被引:12,自引:1,他引:12
该文针对K均值聚类算法存在的缺点,提出一种改进的粒子群优化(PSO)和K均值混合聚类算法。该算法在运行过程中通过引入小概率随机变异操作增强种群的多样性,提高了混合聚类算法全局搜索能力,并根据群体适应度方差来确定K均值算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。将此算法与K均值聚类算法、基于PSO聚类算法和基于传统的粒子群K均值聚类算法进行比较,数据实验证明,该算法有较好的全局收敛性,不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和收敛速度都有显著提高。 相似文献