共查询到19条相似文献,搜索用时 78 毫秒
1.
信号在某种变换下可以稀疏表示是压缩感知研究的先验条件,正交傅里叶变换则是应用非常广泛的一种稀疏变换。但是,由于语音信号是准周期信号,对其进行傅里叶变换会造成频谱泄漏,因而引起信号重构性能的降低。本文基于语音信号准周期性的特点,提出了一种基于差分变换的语音稀疏化变换矩阵,在此基础上采用OMP优化算法来重构语音信号。实验表明,与采用正交傅里叶变换方法对语音信号进行稀疏化变换、OMP算法对语音信号进行重构的方法相比,差分变换方法的性能明显优于正交傅里叶变换的方法,即在相同重构性能时,差分变换的压缩比小于正交傅里叶变换,因而差分变换的方法大大提高了信号的压缩性能。PESQ对重构语音质量评测的结果表明差分变换方法重构的语音信号MOS得分较高,这也说明对于语音信号这一特殊信号,差分变换法具有很大的优越性。 相似文献
2.
基于小波变换的语音压缩感知处理 总被引:1,自引:0,他引:1
文章首先简单介绍了压缩感知(CS)理论框架,然后根据语音信号小波变换系数的特点,提出了改进的压缩感知算法,对高频系数进行压缩处理,低频系数不变.采用基追踪算法重构出高频系数,再利用小波反变换得到原始语音信号.实验结果表明,在相同的测量点数下,本文的算法比原有CS算法在重构语音的信噪比和MOS分上都有较大的提升. 相似文献
3.
4.
目前的VoIP技术已无法满足宽带语音服务的高清语音质量和安全性,文中对这一问题,做了初步的探索和研究。在现有的压缩感知理论基础上,针对语音信号提出了一种新的稀疏域,构造了将压缩感知技术应用于语音信号压缩的基本框架。 相似文献
5.
基于压缩感知的分布式语音压缩与重构 总被引:4,自引:3,他引:4
本文首先阐述了压缩感知(CS)的理论框架,然后分析了语音信号的特点--短时平稳性、离散余弦(DCT)基下的稀疏性,最后提出了基于CS理论的分布式语音压缩重构的框架.基于此框架采用基追踪(BP)和正交匹配追踪(OMP)算法对已压缩的语音信号进行重构,得出结论:每帧语音信号选取的帧长的大小,基于CS理论压缩得到的观测数的多少,都对重构性能有影响. 相似文献
6.
信号检测是压缩感知理论研究的重要内容。针对当前压缩感知信号检测算法没有充分利用稀疏系数幅值和位置信息的不足,提出了一种新的检测算法。该算法首先引入归一化残差变量,有效克服了稀疏系数幅值波动大的缺点;然后,利用不同测量矩阵确定的稀疏系数位置信息,基于正交匹配追踪( OMP)算法实现目标信号检测。实验结果表明,算法的检测性能随着信噪比的提高而增强,且与压缩比负相关,运算复杂度较正交匹配追踪算法和仅利用稀疏系数位置信息的算法相当但检测性能分别提高了4 dB和1 dB。 相似文献
7.
以多重信号分类(Multrple Signal Classification,MUSIC)算法为代表的现代空间谱估计方法,估计的信源数受限于阵列形式,并且需要的采样数据量巨大.文章从压缩感知的基础理论出发,利用目标信号空间分布的稀疏性,建立了基于压缩感知的阵列信号空间谱估计模型.利用压缩感知方法,可以使用较少的阵元数对空间信号进行采样测量,并准确重构信号.相比传统的MUSIC空间谱估计算法,该方法所需阵元数少,采样数据量小,并且能同时进行信号强度和角度的估计.所提方法对推动压缩感知理论在阵列信号空间谱估计中的应用具有一定意义. 相似文献
8.
基于正交匹配追踪算法的语音信号重构研究 总被引:1,自引:0,他引:1
压缩感知理论是近年来提出的一种新兴的基于信号稀疏性的采样理论。正交匹配追踪算法是其中一种典型的重构方法,文中针对语音信号重构中存在的不足,采用正交匹配追踪算法对语音信号进行信号重构,相比于传统的压缩感知的重构算法更加地适用于对含噪语音、重构语音质量会更高,去噪效果也会更明显。为语音信号CS性能的基础性的研究提供了参考。 相似文献
9.
基于近似KLT域的语音信号压缩感知 总被引:7,自引:2,他引:7
压缩感知是近年来兴起的研究热点,该文基于语音信号在KLT域的稀疏特性,提出了基于模板匹配的近似KLT,并在基于模板匹配近似KLT域上研究了语音信号的压缩感知性能。首先验证语音信号在基于模板匹配近似KLT域上的稀疏性,然后由语音信号与观测矩阵构造相应的观测,采取固定分配每帧观测个数和按帧能量自适应分配每帧观测个数两种方案,再以观测为已知条件利用L1优化算法重构语音信号在基于模板匹配近似KLT域的稀疏系数向量,进而重构原始语音信号。实验表明,语音信号在基于模板匹配的近似KLT域的压缩感知性能较好。 相似文献
10.
由于压缩感知理论用于LFM雷达中要预先给出信号稀疏度,提出了自适应正交匹配追踪算法(AOMP),该方法可用于处理LFM雷达回波信号。在稀疏度即目标数目未知时,由不同发射信号通过延时进而相加来构造冗余字典。AOMP算法是依据残差之差的相对能量小于设定的停止门限来自适应终止稀疏分解过程。理论分析和仿真结果表明,存在噪声时,AOMP算法优于OMP算法,明显提高重构算法的重建概率。当回波信号的距离分辨率匹配字典的距离分辨率,冗余字典结合AOMP算法可有效处理LFM雷达回波信号,具有广泛的应用价值。 相似文献
11.
光纤光栅传感在实际的应用中,存在采样信号数据丢失问题,该文提出一种改进重构算法的压缩感知信号修复方法。根据缺损信号特征,选取与之匹配的观测矩阵与稀疏字典。基于压缩感知重构算法,提出匹配光纤布拉格光栅(FBG)信号特征的自适应阈值函数,同时增设阈值判决条件。分析了信号修复与传感测量精度的关系,采用重建信号的寻峰误差来验证信号的修复效果。仿真结果显示,在FBG光谱数据缺失30%的情况下,恢复信号的平均相对误差为10-6;均方根误差为0.0707,比对比算法低0.0232~0.1159;且系统平均运行时间远低于对比算法,表明采用该文算法修复缺损的FBG传感信号具有较高的重构精度与较好的实用性。 相似文献
12.
基于改进正交匹配追踪算法的压缩感知雷达成像方法 总被引:1,自引:0,他引:1
运算复杂度高是基于压缩感知(CS)的雷达成像方法走向实用亟待克服的难题。该文利用雷达目标散射率分布的稀疏性,研究了基于改进正交匹配追踪(OMP)算法的2维联合压缩成像方法。首先建立了步进频雷达回波的稀疏表示模型,根据稀疏字典和压缩测量的2维可分离特性,提出一种改进的OMP算法用于雷达图像形成,大大提高了计算效率,并很容易扩展到其他贪婪类算法中。从理论上对几种CS成像算法的性能及资源需求进行了分析比较,表明所提供的算法相比常规的CS算法在存储量和计算量上均具有显著的优势,仿真及暗室数据实验验证了所提成像算法的有效性。 相似文献
13.
分布式压缩感知实现联合信道估计的方法 总被引:1,自引:0,他引:1
针对无线通信中多个信道之间存在相关性的现象,本文研究了基于压缩感知的联合信道估计。通过选取多个节点与簇头之间的信道为研究背景,本文建立了多信道下的联合信道估计模型,推导了判决门限与信噪比之间的关系,提出了基于门限自适应-正交匹配追踪联合重构技术(TA-SOMP)的信道估计算法,并进行了相应的仿真实验。仿真结果表明:与经典的正交匹配追踪(OMP)算法相比,本文算法所重构的信道与原始信道之间的均方误差(MSE)更小,传输信号误比特率(BER)更低;在相同信噪比环境下,TA-SOMP算法所需导频数量更少,频带利用率更高。 相似文献
14.
为提高电容层析成像(ECT)系统重建图像的质量,该文提出一种基于改进稀疏度自适应的压缩感知电容层析成像算法。利用压缩感知与电容层析成像算法的契合点,以随机改造后的电容层析成像灵敏度矩阵为观测矩阵,离散余弦基为稀疏基,测量电容值为观测值,建立模型。利用线性反投影算法(LBP算法)所得图像预估原始图像稀疏度,以预估稀疏度值作为索引原子初始值进行稀疏度自适应迭代。改进后的稀疏度自适应匹配追踪重构算法实现ECT图像重建,解决了稀疏度预估不准确导致重建图像精度差的问题。仿真实验结果表明,该算法可以有效重建ECT图像,其成像质量优于LBP算法、Landweber算法、Tikhonov算法等传统算法,是研究电容层析成像图像重建的一种新的方法和手段。 相似文献
15.
基于自相关观测的语音信号压缩感知 总被引:1,自引:0,他引:1
本文基于压缩感知技术,根据语音信号的特点,提出了一种基于自相关特性的截断循环自相关矩阵作为观测矩阵,并在此基础上,从实用的角度出发,提出了基于模板匹配的近似截断循环自相关矩阵作为观测矩阵,并证明其满足RIP特性。由语音信号与截断循环自相关矩阵、近似截断循环自相关矩阵和高斯随机矩阵分别构造相应的观测,采用BP算法来重构原始语音信号。实验表明,由2个模板元素线性组合而成的近似截断循环自相关矩阵重构原始语音信号的性能与截断循环自相关矩阵的重构性能相当,且优于经典高斯随机矩阵,而且在相同的重构性能下,其压缩比远大于高斯随机观测矩阵,对语音信号的压缩性能有了明显地提高。 相似文献
16.
压缩感知理论为IR-UWB信号的低速采样接收提供了新的思路,但现有的低速率压缩采样架构大都理想化了量化过程。该文充分考虑量化噪声的实际影响,拟设计出抗噪性强的IR-UWB接收信号重构方法。基于对压缩采样值中噪声分布特性的分析,修正了信号重构模型,并通过仿真对比了DS (Dantzig-Selector)法求解和传统重构算法求解的性能差异。在此基础上,提出了一种在DS和SP (Subspace Pursuit)算法中自适应选择的信号重构方法(联合DS-SP)。仿真结果表明,联合DS-SP以折中于DS和SP之间的复杂度在不同噪声情形下获得了最优的重构性能,且相对经典重构算法有较大的性能提升,为压缩感知框架下的IR-UWB接收机数字后端提供了一种新的信号重构策略。 相似文献
17.
视频压缩感知在采集端资源受限的视频采集应用场景有重要研究意义。重构算法是视频压缩感知的关键技术,基于多假设预测的预测-残差重构框架具有良好的重构性能。但现有的多假设预测算法大多在观测域提出,这种预测方法由于受到不重叠分块的限制,造成了预测帧的块效应,降低了重构质量。针对此问题,该文将像素域多假设预测与观测域多假设预测相结合,提出两级多假设重构思想(2sMHR),并设计了基于图像组(Gw_2sMHR)和基于帧(Fw_2sMHR)的两种实现方法。仿真结果表明,所提2sMHR重构算法能有效减小块效应,相比于现有最好的多假设预测算法具有更低的时间复杂度和更高的视频重构质量。 相似文献
18.
多快拍(MMV)问题旨在恢复具有相同稀疏结构的多列信号。在传统阵列信号处理中MMV问题的求解通常采用多重信号分类(MUSIC)等确定性方法实现,但当快拍数不足或存在相干源时该类方法失效;而在压缩感知(CS)的概率求解模型下,即使信源相干也能得到恢复结果,但现有算法普遍性能不足。近期Kim等人的研究表明,将CS与MUSIC相结合可得到比二者更加优秀的性能和更为宽泛的使用条件,该方法被称作压缩感知 MUSIC或CS-MUSIC算法。作为一种投影型非凸优化算法,差值映射(DM)最早用于解决X射线晶体学中的相位恢复问题,并逐渐在其他非凸及压缩感知问题的求解中展示出优良性能。该文提出一种基于差值映射的CS-MUSIC算法,仿真结果表明该算法在MMV问题求解中十分有效,相比经典CS-MUSIC具有更高的恢复成功率。 相似文献
19.
为充分利用高光谱图像的空间相关性和谱间相关性,该文提出一种基于空谱联合的多假设预测压缩感知重构算法。将高光谱图像分组为参考波段图像和非参考波段图像,参考波段图像利用光滑Landweber投影算法重构,对于非参考波段图像,引入空谱联合的多假设预测模型,提高重构精度。非参考波段图像中每个图像块的预测值不仅来自非参考波段图像未经预测的初始重构值的相邻图像块,而且来自参考波段重构图像相应位置及其邻近的图像块,利用预测值得到测量域中的残差,然后对残差进行重构并对预测值进行修正,此残差比原图像更稀疏,且算法采用迭代方式提高重构图像的精度。借助Tikhonov正则化方法求解多假设预测的权重系数,并基于结构相似性判断是否改变多假设预测搜索窗口大小,最后利用交叉验证计算重构算法终止迭代的判据参数。实验结果表明,所提算法优于仅利用空间相关性或谱间相关性进行预测和不预测的重构算法,其重构图像的峰值信噪比提高2 dB以上。 相似文献