首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
人脸识别是图像识别中受人关注较多的领域之一,人们希望计算机能有像人类一样有强大的视觉能力。人脸识别属于生物特征是识别一种,虽然准确性不如虹膜、指纹的识别,但由于它的简单、直观、易于采集特征且对用户无害,使它成为容易被用户接受的一种生物特征识别。该文介绍了基于隐马尔科夫模型进行人脸识别的算法和具体系统的实现。首先介绍识别所需的图像特征提取算法"二维离散余弦变换"和匹配算法"高斯混合模型和隐马尔可夫模型",其次介绍依据算法实现系统的过程。  相似文献   

2.
基于连续隐马尔可夫模型的人脸识别方法   总被引:1,自引:0,他引:1  
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求.  相似文献   

3.
提出一种改进的基于隐马尔可夫模型的人脸识别方法。利用人脸隐马尔可夫模型的结构特征和Viterbi算法的特点,对特征观察序列进行分割,使用部分序列对所有隐马尔可夫模型递进地计算最大相似度,同时排除相似度最小的隐马尔可夫模型,减少观察序列的计算次数,提高识别效率。实验结果表明,该方法能在不降低识别率的情况下,有效提高识别速度。  相似文献   

4.
置信度判别嵌入式隐马尔可夫模型人脸识别   总被引:2,自引:0,他引:2  
为了提高人脸识别率,提出了一种优化置信度的判别嵌入式隐马尔可夫(EHMM)人脸识别方法。提出的方法基于假设检验,通过最小化检验错误率得到优化置信度判别式训练准则。在优化置信度判别式训练准则的前提下,通过参数估计求解判别式转换矩阵,提取出具有判别性、低维度的图像特征,确保观察样本能正确地分配到其对应的模型状态,以提高所训练出的EHMM模型的正确识别率。理论分析证明了优化置信度判别式训练准则的有效性,详细的实验及与现有方法的比较结果表明,提出的识别方法具有更好的识别性能。  相似文献   

5.
基于小波变换和隐马尔可夫模型的人脸识别方法   总被引:4,自引:1,他引:4  
提出了基于小波变换和隐马尔可夫模型的人脸识别方法。对原始图像采用小波分解后,原始图像被分解到不同的频带上。利用小波理论分析可知,在每一级分解中,低频子图像包含了原始图像的主要描述信息,而其他3个高频子图像包含的信息较少,对模式分类的作用也较小,所以可忽略不计。该算法首先对图像进行3级小波分解,然后把3个不同分辨率的低频子图像由小到大排列成树状结构,形成低频小波树。接着利用主元分析对每个小波树枝进行去相关、降维,形成特征小波树枝,并把它作为观测向量对隐马尔可夫模型进行训练,把优化的模型参数用于人脸识别,实验结果表明,该方法识别率较高,具有很好的发展前景。  相似文献   

6.
代毅  肖国强  宋刚 《计算机应用》2010,30(4):960-963
现有的多数人脸识别系统都专注于如何提高人脸识别算法的性能,但缺乏一种对数据源(人脸样本)进行分析和评估的机制。针对此问题,提出了一种建立在数据源分析基础上对典型人脸识别算法进行后处理的方法。为了揭示现有典型识别算法的识别性能在无约束环境下的鲁棒性,通过建立Lambertian反射模型和3D人脸模型,对特征脸算法的识别性能随数据源的变化(人脸姿态和光照改变)而变化的情况进行了分析评估。针对“数据源灾难”问题,提出了一种基于隐马尔可夫模型(HMM)的后处理解决方法,该方法通过利用视频序列图像的连续性和对训练人脸库的统计分析来提高判别分析方法对无约束环境的鲁棒性。实验结果表明,该方法可以有效地提高识别算法对“数据源灾难”的鲁棒性,提高识别率。  相似文献   

7.
一种基于奇异值分解和隐马尔可夫模型的人脸识别方法   总被引:23,自引:0,他引:23  
提出了一种新的基于隐马尔可夫模型的人脸识别方法,这种方法采用奇异值分解抽取人脸图像特征作为观察序列,减少了数据的存储量和计算量,并提高了识别率,实验结果同其它两种基于隐马尔可夫模型的方法进行了比较。  相似文献   

8.
基于伪二维隐马尔可夫模型的人脸识别   总被引:3,自引:0,他引:3  
叶俊勇  汪同庆  彭健  杨波 《计算机工程》2003,29(1):26-27,95
采用小波分解将原始图像分解为4幅子图像,分别对子图像利用HMM进行学习、识别,根据信息融合的方法确定最后的分类结果,同时改进了Samaria算法中直接利用原始图像灰度数据作为观察矢量,通过K-L变换将降维以后的特征矢量作为观察矢量。  相似文献   

9.
袁燕 《数字社区&智能家居》2007,(9):1414-1414,1421
本文简单介绍了人脸识别研究的发展历史,阐述了人脸识别研究方法的分类以及常用的人脸识别方法,并且提出人脸识别所面临的技术挑战以及研究趋势。  相似文献   

10.
基于PCA算法的人脸识别   总被引:3,自引:0,他引:3  
介绍了隐马尔可夫特征脸模型(HMEM),由概率性主成分分析方法(PPCA)与离散空间马尔可夫模型法(SL-HMM)整合而成,具有PPCA和SL-HMM的双重特性。利用ORL数据库进行人脸识别实验,结果说明该模型在性能上表现出较大的优势。  相似文献   

11.
探讨了利用Gabor小波和隐马尔可夫模型(HMM)进行人脸识别的方法,首先对人脸图像进行多分辨率的Gabor小波变换;然后在图像上放置一组网格结点,每个结点用该结点处的多尺度Gabor幅度特征描述,采用独立元分析法对每个结点进行去相关和降维;最后形成特征结,把每个特征结作为观测向量,对隐马尔可夫模型进行训练,并将优化的模型参数用于人脸识别,ORL人脸库的实验结果表明,该方法识别率高,工程上易于应用。  相似文献   

12.
基于奇异值特征和隐马尔可夫模型的人脸检测   总被引:14,自引:1,他引:14       下载免费PDF全文
提出了基于奇异值特征和隐马尔可夫模型(HMM)的人脸检测方法,首先提出了基于奇异值特征和隐马尔可夫模型的正面端正人脸检测方法;然后将该算法扩展到检测任意旋转角度的人脸,其中正向端正人脸检测算法是通过隐马尔可夫模型来识别人脸/非人脸的奇异值特征,从而达到人脸检测的目的;扩展算法首无计算当前位置子图象窗口的奇异值特征向量,然后利用识别各个旋转角度人脸的HMM模型对之进行分类,以得到该子图象窗口的旋转角度,再经过旋正,重新再与识别正面端正人脸的HMM模型对, 此确定该子图象窗口是否为人脸,通过对一个由51幅集体照片组成的图象集进行测试,其中,正面端正人脸检测率为85.1%,而任意旋转角度的人脸检测率只有72.2%。  相似文献   

13.
基于隐马尔可夫模型的车牌自动识别技术   总被引:4,自引:0,他引:4  
本文基于隐马尔可夫模型(HMM)提出了一种车牌字符识别的新方法,用二维隐马尔可夫模型(2D-HMM)方法来识别车牌中的汉字,用伪二 维隐马尔可夫模型(P2DHMM)方法来识别车牌中的英文字符及阿拉伯数字。该算法适用于不同的字符大小、字符倾斜,污损等情况,抗噪声能力强。字符识别正确率达94%以上,具有实用技术的指标。  相似文献   

14.
数据包是网络通信的基本单位,网络上的入侵行为都应该在数据包中以不同的形式存在、表达着,而且网络中流通的数据包之间必然存在一定的关联性。人工免疫以往的研究多集中在对单个数据包的分析,很难察觉到隐蔽的、缓慢的入侵行为(这些行为的数据包序列间大多有一定的关联性)。因此,该文对于相互联系的多个数据包,挖掘出它们之间的关联特征,并针对这些特征采用了隐马尔柯夫模型的自动机识别器来检测入侵。  相似文献   

15.
基于离散HMM的眉毛识别方法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为说明人类的眉毛作为一种生物特征使用的可能性和可行性,提出了一种基于离散HMM的眉毛识别方法,并对它的识别率随观察符号个数和模型状态数的变化关系进行了初步的实验研究。实验结果表明,该方法在一个27人的小规模眉毛数据库上最高识别率可以达到92.6%。  相似文献   

16.
17.
对于人脸识别系统来说,人脸图像的特征提取和匹配是决定人脸识别系统性能的关键所在。文中提出基于隐马尔科夫模型的人脸识别方法。首先,根据人脸的特点建立马尔科夫模型,然后对图像进行预处理,再利用采样窗对人脸图像进行采样并进行离散余弦变换,提取变换后的系数作为观察向量。最后对人脸图像进行HMM训练,训练结束后即建立了一个人的HMM。基于DCT系数的二维隐马尔科夫模型由于充分利用了人脸图像的二维统计特性,具有较高的识别率。实验结果证明此方法在准确性方面具有良好的性能。  相似文献   

18.
We propose a general framework to combine multiple sequence classifiers working on different sequence representations of a given input. This framework, based on Multi-Stream Hidden Markov Models (MS-HMMs), allows the combination of multiple HMMs operating on partially asynchronous information streams. This combination may operate at different levels of modeling: from the feature level to the post-processing level. This framework is applied to on-line handwriting word recognition by combining temporal and spatial representation of the signal. Different combination schemes are compared experimentally on isolated character recognition and word recognition tasks, using the UNIPEN international database.Received: 16 August 2002, Accepted: 21 November 2002, Published online: 6 June 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号