首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As IP has been extended from core networks to access networks, a mobile network can be considered as an overlay of a traditional cellular network and an IP network. SMS-MIPv6 attempts to integrate mobility management of these two kinds of networks. The basic idea behind SMS-MIPv6 is to exploit existing mobility management in the cellular network (i.e. in the form of well-defined short messages) to locate a Mobile Terminal (MT) in the IPv6 network. We should emphasize that the motivation of SMS-MIPv6 is not to replace or optimize existing mature mobility management schemes. On the contrary, as an entirely end-to-end mechanism for IPv6 mobility management, it provides an alternative mechanism for free peer-to-peer applications such as Voice over IP (VoIP) without support from mobile network operators. We describe the implementation of SMS-MIPv6 in detail and analyze its performance. The evaluation results show that SMS-MIPv6 achieves acceptable performance so that it can be deployed in most current mobile networks. It performs best in terms of signaling cost, data traffic overhead compared with Mobile IPv6 (MIPv6) and Proxy MIPv6 (PMIPv6). Moreover, SMS-MIPv6 can reduce the handover latency significantly, although it is considered as a mobility management scheme for global mobility. However, it increases the session initialization latency due to hybrid binding through the cellular network.  相似文献   

2.
This paper presents comparative results on Hierarchical Mobile IPv6 and Proxy Mobile IPv6. The two mobility support protocols have similar hierarchical mobility management architectures but there are, however, clearly different perceptions: Hierarchical Mobile IPv6 has specific properties of a host-based mobility support protocol, whereas Proxy Mobile IPv6 is based on a network-based mobility support protocol. Thus, it is important to reveal their mobility characteristics and performance impact factors. In this paper, a cost based evaluation model is developed that evaluates the location update cost, the packet delivery cost, and the wireless power consumption cost based on the protocol operations used. Then, the numerical results are presented in where impacts of the various system parameters are evaluated. The results demonstrate that Proxy Mobile IPv6 always outperforms Hierarchical Mobile IPv6 due to its ability to avoid the mobility signaling sent by the mobile host, and its reduced tunneling overhead during communications with other nodes.  相似文献   

3.
With the development of the wireless internet, there are more and more mobile terminals. Without mobility management protocol, mobile terminals could not communicate with others terminals when they are away from their home network. Mobile IPv6 was proposed which is host-based mobility management protocol. But it has several drawbacks, such as wireless link resource waste, load or consumption of power in mobile terminal is large. To overcome the weakness of host-based mobility management protocol, network-based mobility management protocol called Proxy Mobile IPv6 (PMIPv6) is standardized by the internet engineering task force network-based localized mobility management working group, and it is starting to attract considerable attentions. Although several proposals have been made for handover and Route Optimization (RO) in PMIPv6, they still need too many communications, do not consider about seamless-handover and RO without out-of-sequence problem simultaneously. In this paper we proposed a time-efficient handover mechanism in PMIPv6 by using the improved RO. We use the characteristic of anycast to achieve the time efficiency. By the mathematical analysis we prove that the proposed protocol has shorter latency and supports faster mobility of the mobile terminals.  相似文献   

4.
Mobile IPv6 (MIPv6) is a work in progress IETF standard for enabling mobility in IPv6 networks and is expected to have wide deployment. We investigate an integrated mobility and service management scheme based on MIPv6 with the goal to minimize the overall network signaling cost in MIPv6 systems for serving mobility and service management related operations. Our design extends IETF work-in-progress Hierarchical Mobile IPv6 (HMIPv6) with the notion of dynamic mobility anchor points (DMAPs) for each mobile node (MN) instead of static ones for all MNs. These DMAPs are access routers chosen by individual MNs to act as a regional router to reduce the signaling overhead for intra-regional movements. The DMAP domain size, i.e., the number of subnets covered by a DMAP, is based on the MN’s mobility and service characteristics. Under our DMAP protocol, a MN interacts with its home agent and application servers as in the MIPv6 protocol, but optimally determines when and where to launch a DMAP to minimize the network cost in serving the user’s mobility and service management operations. We demonstrate that our DMAP protocol for integrated mobility and service management yields significantly improved performance over basic MIPv6 and HMIPv6.  相似文献   

5.
Proxy Mobile IPv6 (PMIPv6) is designed to provide a network-based localized mobility management protocol, but it does not handle the global mobility of hosts. In this paper, we propose a location management scheme based on Domain Name System (DNS) for PMIPv6 which can support global mobility by using DNS as a location manager. In addition, to support large numbers of mobile terminals and enhance network scalability a paging extension scheme is introduced to PMIPv6.To evaluate the proposed location management scheme, we establish an analytical model, formulate the location update cost and the paging cost,and analyze the influence of the different factors on the total signaling cost. The performance results show that our proposed scheme outperforms the basic PMIPv6 under various parameters in terms of reducing the signaling overhead and the proposed scheme reduces signaling overhead compared to the basic PMIPv6.  相似文献   

6.
移动IPv6分层管理费用的分析与自适应优化   总被引:8,自引:0,他引:8       下载免费PDF全文
彭雪海  张宏科  张思东 《电子学报》2004,32(10):1690-1693
为综合优化分层域内外以网络传输花费和带宽占用为代表的通信管理费用,论文对实施分层移动IPv6前后的费用变化进行了理论分析,得出了判决是否适宜使用分层移动管理的准则,并在此基础上提出一种允许移动节点动态地根据切换频度和流量强度等参数选择适宜的移动管理机制的自适应优化方案.仿真结果表明该方案能获得比静止使用某种移动管理机制更好的资源使用效率,可望具有较好的实际应用价值.  相似文献   

7.
RSVP Extensions for Real-Time Services in Hierarchical Mobile IPv6   总被引:2,自引:0,他引:2  
The Mobile IPv6 (MIPv6) provides many great features, such as sufficient addressing space, mobility, and security; MIPv6 is one of the most important protocols for next generation mobile Internet. Simultaneously, with the rapid improvement of wireless technologies, the real-time multi-media IP services such as video on demand, videoconference, interactive games, IP telephony and video IP phone will be delivered in the near future. Thus, to furnish accurate QoS for real-time services is one of the most important thing in the next generation mobile Internet. Although RSVP, which is a resource reservation protocol, processes signaling messages to establish QoS paths between senders and receivers, RSVP was originally designed for stationary networks and not aware of the mobility of MNs. Therefore, this paper proposes a novel RSVP extension to support real-time services in Hierarchical Mobile IPv6 (HMIPv6) environments. For intra-site mobility, the concept of QoS Agent (QA) is proposed to handle the RSVP QoS update messages and provide the advanced reservation models for real-time services. For inter-site mobility, IP multicast can help to invite inter-site QAs to make pre-reservation and minimize the service disruption caused by re-routing the data path during handover. Simulation results show that the proposed scheme over HMIPv6 is more suitable for real-time services than the famous RSVP tunnel-based solution.  相似文献   

8.
The current IP mobility protocols are called centralized mobility management (CMM) solutions, in which all data traffic and management signaling messages must be forwarded to an anchor entity. In some vehicle scenarios, vehicles may move as a group from one roadside unit to another (i.e., after traffic lights or traffic jams). This causes data traffic and exchanged mobility messages to peak at the anchor entity and, consequently, affects the network performance. A new design paradigm aimed at addressing the anchor entity issue is called distributed mobility management (DMM); it is an IETF proposal that is still being actively discussed by the IETF DMM working group. Nevertheless, network-based DMM is designed based on the well-known network-based CMM protocol Proxy Mobile IPv6 (PMIPv6). There is no significant difference between network-based DMM and PMIPv6 in terms of handover latency and packet loss. Because vehicles change their roadside unit frequently in this context, the IP addresses of mobile users (MUs) require fast IP handover management to configure a new IP address without disrupting ongoing sessions. Thus, this paper proposes the Fast handover for network-based DMM (FDMM) based on the Fast Handover for PMIPv6 (PFMIPv6). Several modifications to PFMIPv6 are required to adapt this protocol to DMM. This paper specifies the necessary extensions to support the scenario in which an MU has old IP flows and hence has multiple anchor entities. In addition, the analytic expressions required to evaluate and compare the handover performance of the proposed FDMM and the IETF network-based DMM have been derived. The numerical results show that FDMM outperforms the IETF network-based DMM in terms of handover latency, session recovery and packet loss at the cost of some extra signaling.  相似文献   

9.
The handover processes in present IP mobility management protocols incur significant latency, thus aggravating QoS of consumer devices. In this paper, we introduce an enhanced handover process for the Proxy Mobile IPv6 (PMIPv6) protocol, which is a recently developed IP mobility management protocol aiming at providing network-based mobility support. The proposed handover process further improves handover performance of PMIPv6 by allowing a new access network obtains handover context before a consumer??s mobile node (MN) moves to the new access network. Data packets destined for the MN are buffered to prevent packet loss and immediately delivered to the MN as the MN moves to the new access network. We evaluate the handover latency and data packet loss of the proposed handover process compared to the basic one of PMIPv6. The conducted analysis results confirm that the proposed handover process yields the reduced handover latency compared to that of the basic PMIPv6 and also prevents data packet loss. We moreover evaluate the buffering cost of the proposed handover process.  相似文献   

10.
IPv6 multihoming support in the mobile internet   总被引:2,自引:0,他引:2  
Fourth-generation mobile devices incorporate multiple interfaces with diverse access technologies. The current Mobile IPv6 protocol fails to support the enhanced fault tolerance capabilities that are enabled by the availability of multiple interfaces. In particular, established MIPv6 communications cannot be preserved through outages affecting the home address. In this article, we describe an architecture for IPv6 mobile host multihoming that enables transport layer survivability through multiple failure modes. The proposed approach relies on the cooperation between the MIPv6 and the SHIM6 protocols.  相似文献   

11.
Proxy Mobile IPv6 (PMIPv6) is a networked-based handover protocol for the IP layer, i.e., the layer 3 mobility management protocol. In this work, we integrate fast handover and IEEE 802.21 Media Independent Handover (MIH) Services with PMIPv6 to improve the handover performance over the heterogeneous wireless network environment. Since it may have multiple candidate destination networks to which a Mobile Node can select for handover, it needs to consider not only the signal strength but also the corresponding networking situation for the proper selection of the next network. To reduce the packet loss situation, the multicast mechanism is adopted to forward packets to these candidate destination networks during the handover processing period. In this work, a Forward Fast Media Independent Handover Control Scheme for Proxy Mobile IPv6 (FFMIH-PMIPv6) is proposed based on the aforementioned concerns. Through the simulations for performance analysis, it shows that the proposed FFMIH-PMIPv6 can have better handover performance in terms of handover latency, packet loss rate and throughput.  相似文献   

12.
As a network-based localized mobility management protocol, Proxy Mobile IPv6 (PMIPv6) enables a Mobile Host (MH) to roam within a localized domain without MH intervention in the mobility-related signalling. However, the PMIPv6 maintains MH mobility support in a restriction domain. Therefore, whenever the MH roams away from the PMIPv6 domain, its reachability status will be broken-down causing high handover latency and inevitable traffic loss for its communication session. This article proposes a proactive mechanism to mange the MH handover and maintain its data session continually across inter-PMIPv6-domains. The proposed mechanism introduces an intermediate global mobility anchor entity, called, which is responsible to coordinate MH handover as well as redirect its traffic across inter-PMIPv6-domains. Through various simulation evaluations, via ns-2, several experiments were conducted, revealing numerous results that verify the proposed mechanism superior performance over the conventional inter-PMIPv6-domain handover schemes in terms of handover latency, achieved throughput, protocol signalling cost and end-to-end traffic delivery latency.  相似文献   

13.
Tuomas Aura  Michael Roe 《电信纪事》2006,61(3-4):332-356
Mobile IPv6 is a network-layer mobility protocol for the IPv6 Internet. The protocol includes several security mechanisms, such as the return-routability tests for the mobile’s home address and care-of addresses. This paper explains the threat model and design principles that motivated the Mobile IPv6 security features. While many of the ideas have become parts of the standard toolkit for designing Internet mobility protocols, some details of the reasoning have not been previously documented.  相似文献   

14.
Both IPv6 and session initiation protocol (SIP) are default protocols for Universal Mobile Telecommunications System (UMTS) all-Internet protocol (IP) network. In the existing mobile telecommunications environments, an IPv6-based UMTS all-IP network needs to interwork with other Internet protocol version 4 (IPv4)-based SIP networks. Therefore, mobile SIP applications are typically offered through an overlay structure over the IPv4-Internet protocol version 6 (IPv6) interworking environments. Based on 3GPP 23.228, we propose an IPv4-IPv6 translation mechanism (i.e., SIPv6 translator) that integrates different IP infrastructures (i.e., IPv4 and IPv6) to provide an overlay network for transparent SIP application deployment. In this paper, we present the architecture and the call flows of the SIPv6 translator. An analytic model is proposed to investigate the fault tolerance issue of our approach. Our study provides guidelines to select appropriate number of processors for fault tolerance.  相似文献   

15.
Resource reservation protocol (RSVP) is a network‐control protocol used to guarantee Quality‐of‐Service (QoS) requirements for real‐time applications such as Voice‐over‐IP (VoIP) or Video‐over‐IP (VIP). However, RSVP was designed for end‐systems whose IP addresses do not change. Once mobility of an end‐system is allowed, the dynamically changing mobile IP address inevitably impacts on RSVP performance. Our study aims to first quantify the significance of this impact, and then propose a modified RSVP mechanism that provides improved performance during handoffs. Our simulations reveal that the deployment of standard RSVP over Mobile IPv6 (MIPv6) does not yield a satisfactory result, particularly in the case of VIP traffic. Fast Handovers for Mobile IPv6 (FMIPv6) was found to be providing the best performance in all tested scenarios, followed by Hierarchical Mobile IPv6 (HMIPv6) with a single exception: during low handoff rates with VoIP traffic, MIPv6 outperformed HMIPv6. We then designed a new RSVP mechanism, and tested it against standard RSVP. We found that the proposed approach provides a significant improvement of 54.1% in the Total Interruption in QoS (TIQoS) when deployed over a MIPv6 wireless network. For HMIPv6, performance depended primarily on the number of hierarchical levels in the network, with no improvement in TIQoS for single‐level hierarchy and up to 37% for a 5‐level hierarchy. FMIPv6 on the other hand, provided no room for improvement due to pre‐handoff signaling and the tunneling mechanism used to ensure a mobile node (MN)'s connectivity during a handoff, regardless of the RSVP mechanism used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Seamless mobility in future generation networks, which are envisioned to be heterogeneous in nature, is an important issue. While Internet Engineering Task Force (IETF) work groups have standardized various mobility management protocols, such as Mobile IPv6 and Proxy Mobile IPv6, a comprehensive study of these protocols in terms of various performance characteristics is a challenging issue. Moreover, this study also considers the recent proposals from IETF in distributed mobility management (DMM) protocols. In this paper, a novel analytical model is developed for comparison of various mobility management protocols in terms of handover latency, as well as packet density, and packet arrival rate during the handover time by applying transport engineering principles in the field of telecommunication. The signaling cost analysis using signaling overhead incurred during protocol operations is given for each of these protocols. The number of packets that can be lost during the handover operation is also obtained using this model. Moreover, it presents a unified framework using which one can assess the performance characteristics of both host based and network based mobile IP protocols. One can also assess the performance of centralized and DMM approaches. The correctness of the proposed model is established by the fact that it leads to results similar to those obtained by applying some of the existing models. At the same time, the model allows one to obtain additional results showing the effect of packet density and packet arrival rate on the handover latency.  相似文献   

17.
Providing efficient mobility management in the current Internet is increasingly important due to the quick growth of wireless mobile users. The emerging Proxy Mobile IPv4 (PMIPv4) technique brings a possible solution for that purpose. Since NAT function is widely adopted in IPv4 environment nowadays because of lacking IPv4 addresses, the PMIPv4 interoperating with NAT must be considered. Unfortunately, owing to the possible conflict of private IP address, we encounter a problem in broadcasted point-to-multipoint wireless networks such as IEEE 802.11 networks. To address this issue, we proposed a novel Network Address Translation on Demand (NAToD) scheme, which can well interoperate with the PMIPv4 solution. With our scheme, single public IPv4 addresses can be shared by multiple mobile nodes in both home and foreign networks, low-latency handoff can be achieved, deployment cost can be reduced, and software upgrade can be avoided for mobile nodes in wireless LANs. Our work allows mobile users in WLAN to access Internet based on the advantages of both PMIPv4 and NAT.  相似文献   

18.
Handover management for mobile nodes in IPv6 networks   总被引:16,自引:0,他引:16  
We analyze IPv6 handover over wireless LAN. Mobile IPv6 is designed to manage mobile nodes' movements between wireless IPv6 networks. Nevertheless, the active communications of a mobile node are interrupted until the handover completes. Therefore, several extensions to Mobile IPv6 have been proposed to reduce the handover latency and the number of lost packets. We describe two of them, hierarchical Mobile IPv6, which manages local movements into a domain, and fast handover protocol, which allows the use of layer 2 triggers to anticipate the handover. We expose the specific handover algorithms proposed by all these methods. We also evaluate the handover latency over IEEE 802.11b wireless LAN. We compare the layer 2 and layer 3 handover latency in the Mobile IPv6 case in order to show the saving of time expected by using anticipation. We conclude by showing how to adapt the IEEE 802.11b control frames to set up such anticipation.  相似文献   

19.
一种代理移动IPv6认证协议   总被引:3,自引:0,他引:3       下载免费PDF全文
周华春  张宏科  秦雅娟 《电子学报》2008,36(10):1873-1880
代理移动IPv6为移动节点提供了基于网络的移动性管理方法,移动节点不参与管理移动性信令.为了在移动互联网络中应用代理移动IPv6协议,需要定义安全有效的认证协议.目前还没有见到关于代理移动IPv6认证协议方面的研究,本文提出了一种代理移动IPv6的认证协议,该认证协议可以提供接入认证功能,并可防止重放攻击和密钥暴露.为了分析该认证协议的性能,本文给出了认证费用和认证延迟分析的解析模型,分析了移动性和流量参数对认证费用和认证延迟的影响.研究结果表明提出的代理移动IPv6认证协议安全有效.  相似文献   

20.
Mobile IPv6 is only adapted to the mobile’s movements within its own administrative domain. As Mobile IPv6 is expected to be the basis for beyond 3G networks, a solution for inter-domain security is required allowing the visited domain to authenticate any mobile to grant it access. As such, new concepts known as AAA for Authentication, Authorization, Accounting were defined by the IETF. The IETF is currently defining the Diametr protocol to support those three functions in a Mobile IPv4 environment. Today’s difficulty is to adapt the Diameter protocol to Mobile IPv6. After introducing the Mobile IPv6, IPsec and Diameter protocols, this paper presents our solution (IETF draft of December 2001), and an IETF alternative for adapting Diameter to Mobile IPv6. It gives a comparison and describes our prototype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号