首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cubic boron nitride ( c -BN) was synthesized by the decomposition of Mg3BN3 under high pressure and high temperature. The minimum pressure for c -BN synthesis was 4 GPa, which was 1 GPa lower than that of the conventional catalytic process. The decomposition of Mg3BN3 was observed only when H2O was added. Therefore, the reaction was as follows: Mg3BN3+ 3H2O = 3MgO + c -BN + 2NH3. The c -BN crystals obtained were tetrahedron in shape and about 10 μ m in diameter.  相似文献   

2.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

3.
Rutile or anatase may be depolymerized and complexed by sequential treatment with (i) H2SO4/(NH4)2SO4, (ii) H2O, and (iii) catechol/NH4OH to produce the intermediate (NH4)2(Ti(catecholate)3) · 2H2O. Treatment with Ba(OH)2· 8H2O leads to an acid-base reaction generating Ba(Ti(catecholate)3) · 3H2O, in which the Ba:Ti ratio is held at 1:1 at the molecular level. Calcination produces BaTiO3 powder.  相似文献   

4.
It is reported that, on mechanochemical treatment, weinschenkite-type RPO4·2H2O (R = Dy, Y, or Er) gradually transforms into rhabdophane-type RPO4· nH2O (n = 0.5 to 1) and weinschenkite-type YbPO4·2H2O into xenotime-type YbPO4, at room temperature in air. Rhabdophane-type YPO4·0.8H2O and ErPO4·0.9H2O obtained by grinding weinschenkite-type RPO4·2H2O (R=Y or Er) are new. The new rhabdophane-type YPO4·0.8H2O and ErPO4·0.9H2O gradually transform to xenotime-type YPO4 and ErPO4 when heated above 900°C (R = Y) and 700°C (R = Er) in air.  相似文献   

5.
The phase diagram for the ternary system MgO─P2O5─H2O at 25°C has been constructed. The magnesium phosphates represented are Mg(H2PO4)2· n H2O ( n = 4, 2, 0), MgHPO4·3H2O, and Mg3(PO4)2· m H2O ( m = 8, 22). Because of the large differences in the solubilities of these compounds, the technique which involves plotting the mole fractions of MgO and P2O5 as their 10th roots has been employed. With the exception of MgHPO4·3H2O, the magnesium phosphates are incongruently soluble. Because incongruency is associated with a peritectic-like reaction, the phase Mg2(PO4)3· 8H2O persists metastably for an extended period.  相似文献   

6.
The precursor [NH4]2[Ti(catecholate)3] · 2H2O is known to react with Ba(OH)2· 8H2O in an acid/base process that generates Ba[Ti(catecholate)3] · 3H2O, a compound which undergoes low-temperatue calcination to produce BaTiO3 powder. Attempts to develop similar routes to PbTiO3 have been frustrated, since lead(II) hydroxide does not exist. The amphoteric yellow PbO and the basic oxide, Pb6O(OH)64+, are both insufficiently basic to react with [NH4]2[Ti(catecholate)3] · 2H2O. Based on the large sizes of both the [Ti(catecholate)3]2- anion and the Pb2+ cation, a precipitation method has been developed in which lead nitrate and [NH4]2[Ti(catecholate)3] · 2H2O are added together in an aqueous medium causing precipitation and leaving only NH4NO3 in solution. The lead-titanium-catecholate complex that forms in this manner undergoes low-temperature pyrolysis to produce PbTiO3. SEM indicates a submicrometer ultimate crystallite size.  相似文献   

7.
Amorphous WO3 or WO3 or H2O is formed by hydrolysis of tungsten ethoxide. The temperature of hydrolysis influences the crystallization of WO3·H2O. Tungsten hydrate (WO3·H2O) has an orthorhombic unit cell with a=0.5235 nm, b = 1.0688 nm, and c=0.5123 nm. Orthorhombic WO3 crystallizes at 350° to 500°Cfrom amorphous WO3. Cubic WO3 is formed at 200° to 310°C with dehydration of WO3·H2O. WO3 transformations are examined by high-temperature X-ray diffraction. The kinetics of formation of the cubic modification have been studied by measuring the weight decrease with a thermobalcnce. Formation isotherms can be interpreted in terms of the first-order equation –In (1–f)=kt; activation energies are 110 and 80 kJ mol−1 for initial and final stages, respectively.  相似文献   

8.
The compound compositions of four aluminous cements were determined on anhydrous as well as hydrated specimens which had been heat-treated at temperatures between room temperature and 1400° C. Phases were identified by X-ray diffraction and differential thermal analysis. Specimens were also tested for transverse strength, dynamic modulus of elasticity, and thermal length change. A study of the dehydration characteristics of CaO - Al2O8 - 10H2O3 3CaO.Al2O3. 6H2O, and Al2O3. 3H2O was included. The data indicated that CaO. Al2O3 10H2O was the primary crystalline hydrate formed in the cements at room temperature. At 50° C., 3 CaO Al2O3-6H2O and Al2O3. 3H2O were formed as by-products of the dehydration of CaO.Al2O3.10H2O. When heated alone in an open system, CaO.Al2O3.10H2O did not convert to 3CaO. Al2O3. 6H2O and A12O3. 3H2O. A correlation between the mechanical properties and compound compositions was noted.  相似文献   

9.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

10.
A silicon carbide composite containing titanium diboride particulate reinforcement was subjected to room-temperature acidic corrosion in aqua regia solutions for 200 h, and 50% NaOH+50% H2O and 10% HF+57% HNO3+33% H2O solutions for up to 500 h. A small increase in room-temperature strength was observed after the aqua regia exposure. Separately, this ceramic was oxidized at 1400°C for 24 h and then tested for strength retention at room temperature. Contrary to the observations reported in the literature on similar material, there was no significant room-temperature strength decrease in this particular composite.  相似文献   

11.
The hydration of two high replacement composite cements (3:1 blast furnace slag:ordinary Portland cement (BFS:OPC), and 3:1 pulverized fuel ash:OPC (PFA:OPC)) with the addition of both SnCl2 and SnCl4 has been investigated and the results from X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) are presented. Adding 5% or 1% SnCl2·2H2O or SnCl4·5H2O to the mix water resulted in the formation of Friedel's salt, Ca3Al2O6.CaCl2·10H2O, and calcium hydroxo-stannate CaSn(OH)6, which also involved the consumption of calcium hydroxide. After 90 days hydration at lower levels of addition (i.e., 1%) there was no longer evidence for CaSn(OH)6, indicating that it too had been consumed in the pozzolanic reaction due to the lack of calcium hydroxide present. Results from SEM and EDS showed that bright regions between the BFS or PFA grains were tin containing and they were incorporated into the hydrated cement matrix. The tin was, therefore, localized rather than spread throughout and intimately incorporated into the microstructure.  相似文献   

12.
Phase equilibria in the Ag-CuO-Cu2O system were experimentally determined using thermal analysis, and structural and compositional studies. Three reactions were observed in air: (1) L1= CuO + Ag, (2) L2= CuO + L1, and (3) Cu2O = CuO + L2. The evolution and absorption of oxygen accompanied these reactions. At oxygen partial pressures below 0.02 bar, the reactions L1= Cu2O + Ag and L2= Cu2O + L1 were found. Based on isobaric projections in the Ag-CuO-Cu2O system, two invariant reactions, L1= CuO + Cu2O + Ag and L2= CuO + Cu2O + L1, were deduced.  相似文献   

13.
An exothermic transition is observed near 400°CC on thermal dehydration of highly crystalline AI2(SO4)3.16H2O, Al2(S04)3 14H2O, and Al2(S04)3 9H2O when the early stages of heating are carried out in vacuum. Amorphous or partially crystalline hydrates do not show the exotherm. No systematic relation is apparent between the decomposition behavior and the pore volume distribution of the various anhydrous A12(SO4)3 products.  相似文献   

14.
An important molecular precursor to barium titanate, namely, barium titanyl oxalate [BaTiO(C2O4)2.4H2O], has been synthesized by an alternative route. An alcoholic solution containing 1 mol of butyl titanate monomer [(C4H9O)4Ti] is reacted with alcoholic solution containing 2 mol of oxalic acid (H2C2O4:2H2O) to form an intermediate soluble oxalotitanic acid [H2TiO(C2O4)2.nH2O]. The oxalotitanic acid in alcoholic medium is subjected to cation exchange reaction with aqueous solution containing equimolar barium acetate to form an insoluble barium titanyl oxalate (BTO) in yields of 80–85% at room temperature. The pyrolysis of BTO in air at T .750°C/5 h produced barium titanate (BT) powders.  相似文献   

15.
A study of the system Al2O3–Ga2O3–H2O has resulted in the determination of equilibrium diagrams for the systems Al2O3–Ga2O3 and Al2O3.-H2O–Ga2O3.H2O. Extensive solid solution characterizes the α -Al2O3 and β -Ga2O3 structures at high temperatures, but it is shown that below 810°C. a compound, GaAlO3, and a new series of (Al, Ga)2O3 structures are stable. Among the hydrates, a complete series of diaspore solid solutions extends from Al2O3.H2O to Ga2O3.H2O. Boehmite solid solutions extend to approximately the composition 70Al2O3.H2O, 30Ga2O3.H2O.  相似文献   

16.
Preparation of Hydroxyapatite Fibers by Electrospinning Technique   总被引:1,自引:0,他引:1  
Hydroxyapatite (Ca10(PO4)6(OH)2, HA) fibers were prepared by electrospinning a precursor mixture of Ca(NO3)2·4H2O and (C2H5O)3PO with a polymer additive, followed by a thermal treatment. The X-ray diffraction (XRD) analysis of the annealed composite fibers revealed that pure HA phase could be obtained by annealing at 600°C for 1 h. The scanning electron microscopy (SEM) analysis showed the surface of as-electrospun composite fibers with an average diameter of 50 μm was smooth due to the amorphous nature of the polymer. However, the surface of the calcined HA fibers was rough because of the complete removal of the polymer. The pure HA fibers obtained by electrospinning in this work were up to 10 mm in length and 10–30 μm in diameter and the hydroxyapatite grain size was ∼1 μm in the HA fibers.  相似文献   

17.
A (Ce0.67Tb0.33)Mn x Mg1− x Al11O19 phosphor powder was synthesized, using a simple sol–gel process, by mixing citric acid with CeO2, Tb4O7, Al(NO3)3·9H2O, Mg(OH)2·4MgCO3·6H2O, and Mn(CH3COO)2. The phosphor crystallized completely at 1200°C, and the phosphor particle size was between 1 and 5 μm. The excitation spectrum was characteristic of Ce3+, while the emission spectrum was composed of lines from Tb3+ and Mn2+. The Mn2+ gave a green fluorescence band, and concentration quenching occurred when x > 0.10. The luminescent properties of the phosphor were explained by a configurational coordinate model.  相似文献   

18.
The thermal decompositions of BaTiO(c2O4)2.- 4H2O, BaTiO(OH)2C2O4.2H2O, SrTiO(C2O4)2.- 4H2O, and SrTiO(OH)2C2O4.H2O were investigated using TGA, DTA, and effluent gas analysis. The stoichiometry of the decompositions is discussed and it is proposed that a reduced state of titanium is formed as an intermediate.  相似文献   

19.
In humid air, a nascent Al-metal surface (S) with a surface Hg2+ catalyst hydrolyzes in divided reaction centers (micelles) with a vigorous exothermic reaction, {Al + 2OH}+αH2O → AlO(OH)·αH2O + 3e+ H+. It yields amorphous AlO(OH)·αH2O with a huge ∼90% porosity with α= 0.25. The primary driving forces of the reaction are the chemical potential μe between the reaction species, the mechanical stress ς induced in expansion of S, and the flow of the reaction species. They drive it in a common direction perpendicular to S. The heat released in it flows primarily along S. It disrupts and stops the directional hydrolysis if the local temperature in the micelle reaches a critical value T c (hot spot). The hot spot cools to the operating value T 0, and the reaction restarts and runs over to T c in a periodic manner, at a time scale of Δ t i∼ 5 s, per the dynamics of hot spots, forming a self-organized mesoporous structure of 15–50-nm diameter ellipsoidal shaped particles (halo) separated through 3–5-nm pores. A pore, in continuous formation of the sample, forms in disrupted reaction during the hot spot as it cools from T c to T 0. The result is modeled in terms of the microstructure and dynamics of the hot spots.  相似文献   

20.
Dehydration of Hydrous Zirconia with Methanol   总被引:13,自引:0,他引:13  
The washing of hydrous zirconia with alcohols to reduce the incidence of hard agglomerates on subsequent drying is well known. The results of methanol dehydration of hydrous zirconia (zirconium hydroxide), [Zr4(μ-OH)8(OH)8(H2O)8]˙ xH2O, show that only μ-OH groups are unaffected. This suggests two things: First, the removal of nonbridging hydrooxo groups and water with alcohols such as methanol leads to a reduction/elimination of hard agglomerates. Second, hard agglomerate formation is associated with condensation reactions involving nonbridging hydroxo groups (Zr-OH+HO-Zr→Zr-O-Zr+H2O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号