首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airport expansion projects often require the presence and movement of construction labor and equipment near critical airport traffic areas. This close proximity between construction activities and airport operations needs to be carefully considered during the planning of construction site layouts in order to minimize and eliminate all potential construction-related hazards to aviation safety. This paper presents the development of a multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related hazards and minimizing site layout costs, simultaneously. The model incorporates newly developed optimization functions and metrics that enable: (1) maximizing the control of hazardous construction debris near airport traffic areas; (2) minimizing site layout costs including the travel cost of construction resources and the cost of debris control measures on airport sites; and (3) satisfying all operational safety constraints required by the federal aviation administration as well as other practical site layout constraints. The model is implemented using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model and its capabilities in optimizing construction site layouts in airport expansion projects.  相似文献   

2.
Planning construction site layouts involves identifying the positions of temporary facilities on site, and accordingly it has a significant impact on the safety and efficiency of construction operations. Although available models are capable of minimizing the travel cost of resources on site, they do not consider safety as an important and separate objective in the optimization of site layouts. This paper presents the development of an expanded site layout planning model that is capable of maximizing construction safety and minimizing the travel cost of resources on site, simultaneously. The model incorporates newly developed concepts and performance criteria that enable the quantification of construction safety and travel cost of resources on site. The present model is developed in three main phases: (1) formulating decision variables and optimization objectives in this site layout planning problem; (2) identifying and satisfying all practical constraints in this optimization problem; and (3) implementing the model as a multiobjective genetic algorithm. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing construction site layouts and generating optimal trade-offs between safety and travel cost of resources on site.  相似文献   

3.
EvoSite: Evolution-Based Model for Site Layout Planning   总被引:1,自引:0,他引:1  
Appropriate site layout of temporary facilities is crucial for enhancing the productivity and safety on construction sites. Site layout planning, however, is a complex problem, and researchers have attempted to solve it using a variety of optimization-based and heuristic-based techniques. In this paper, a genetic-algorithm-based model for site layout planning is presented. The advantages of the model stem from three main characteristics: (1) It applies to any user-defined site shape; (2) it accounts for the user preference in the relative closeness among the facilities; and (3) it incorporates a genetic algorithm procedure to search for the optimum layout in a manner that simulates natural evolution. Based on the proposed model, a comprehensive system for site layout planning (EvoSite) is developed. EvoSite uses an intuitive spreadsheet representation of the site and the facilities, and automates the evolution of layout solutions. Details of model development and implementation are described, and an example application is presented to demonstrate the capabilities of the EvoSite system. The advantages, limitations, and future extensions of EvoSite are then discussed.  相似文献   

4.
Construction operations in airport expansion projects often attract wildlife species to critical airport traffic areas leading to an increase in the risk of wildlife–aircraft collision accidents. Airport operators and construction planners need to carefully consider and minimize these wildlife hazards during the planning of construction site layouts in order to comply with Federal Aviation Administration recommendations. This paper presents the development of an advanced optimization model for planning airport construction site layouts that is capable of minimizing the hazards of wildlife attractants and minimizing the site layout costs, simultaneously. The model incorporates newly developed concepts and performance criteria that enable (1) quantifying, controlling, and minimizing the hazards of construction-related wildlife attractants near airport traffic areas; and (2) minimizing the travel cost of construction resources and the cost of devices installed to control wildlife on airport construction sites, while complying with all relevant aviation safety constraints. The model is developed using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model in optimizing airport construction site layouts and its unique capability of generating optimal trade-offs between wildlife control and site layout costs.  相似文献   

5.
The interactive, complicated system environment of a construction site renders conventional site layout planning and scheduling techniques to be inadequate in coping with materials handling system design in construction. In this paper, we present a university-industry joint endeavor for improving the effectiveness of the materials handling system on a precast viaduct construction project in Hong Kong by implementing the simplified discrete-event simulation approach (SDESA) along with its computer platform resulting from recent research. How to apply the simulation methodology of SDESA is elaborated step by step. Particular emphasis is placed on procedures of establishing a simulation model, validation of the simulation model, design of simulation experiments, and analysis of simulation results. With process flowchart, site layout plan, and process animation produced in a view-centric simulation environment, it is straightforward to establish, validate, and communicate the operations simulation. The research team convinced the project director, as well as field managers, of the functionality and effectiveness of operations simulation. The knowledge derived from simulation added to experiences of site managers in materials handling system design. With the aid of simulation, even junior engineers would be capable and confident to draw up an actionable construction plan that would lead to enhancement of cost effectiveness and productivity in the field.  相似文献   

6.
Airport expansion projects often require the presence of construction personnel, material, and equipment near airport secure areas/facilities, leading to an increase in the level of risk to airport security. Construction planners and airport operators need to carefully study this challenge and implement active measures in order to minimize construction-related security breaches and comply with all relevant Federal Aviation Administration guidelines. This paper presents the development of an advanced multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related security breaches while simultaneously minimizing site layout costs. The model incorporates newly developed criteria and performance metrics that enable evaluating and maximizing the construction-related security level in operating airports. The model is developed using a multiobjective genetic algorithm, and an application example is analyzed to demonstrate the use of the model and its unique capability of generating a wide spectrum of optimal trade-offs between construction-related airport security and site layout costs.  相似文献   

7.
A good site layout is vital to ensure the safety of the working environment and effective and efficient operations. Site layout planning has significant impacts on productivity, costs, and duration of construction. Construction site layout planning involves identifying, sizing, and positioning temporary and permanent facilities within the boundary of the construction site. Site layout planning can be viewed as a complex optimization problem. Although construction site layout planning is a critical process, systematical analysis of this problem is always difficult because of the existence of a vast number of trades and interrelated planning constraints. The problem has been solved using two distinct approaches: Optimization techniques and heuristics methods. Mathematical optimization procedures have been developed to produce optimal solutions, but they are only applicable for small-size problems. Artificial intelligent techniques have been used practically to handle real-life problems. On the other hand, heuristic methods have been used to produce good but not optimal solutions for large problems. In this paper, an optimization model has been developed for solving the site layout planning problem considering safety and environmental issues and actual distance between facilities. Genetic algorithms are used as an optimization bed for the developed model. In order to validate the performance of the developed model, a real-life construction project was tested. The obtained results proved that satisfactory solutions were obtained.  相似文献   

8.
Four experiments investigated the nature of spatial representations used in locomotion. Participants learned the layout of several objects and then pointed to the objects while blindfolded in 3 conditions: before turning (baseline), after turning to a new heading (updating), and after disorientation (disorientation). The internal consistency of pointing in the disorientation condition was relatively high and equivalent to that in the baseline and updating conditions, when the layout had salient intrinsic axes and the participants learned the locations of the objects on the periphery of the layout. The internal consistency of pointing was disrupted by disorientation when participants learned the locations of objects while standing amid them and the layout did not have salient intrinsic axes. It was also observed that many participants retrieved spatial relations after disorientation from the original learning heading. These results indicate that people form an allocentric representation of object-to-object spatial relations when they learn the layout of a novel environment and use that representation to locate objects around them. Egocentric representations may be used to locate objects when allocentric representations are not of high fidelity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Site layout planning can affect productivity and is crucial to project success. However, as construction is heterogeneous in the nature of its organizations, project designs, time constraints, environmental effects, etc., site layout planning for each project becomes unique. Affected by many uncertainties (variables) and variations, site layout planning is a typical multiobjective problem. To facilitate the decision-making process for these problems, a nonstructural fuzzy decision support system (NSFDSS) is proposed. NSFDSS integrates both experts’ judgment and computer decision modeling, making it suitable for the appraisal of complicated construction problems. The system allows assessments based on pairwise comparisons of alternatives using semantic operators that can provide a reliable assessment result even under the condition of insufficient precise information.  相似文献   

10.
Dynamic site layout planning requires identifying and updating the positions of all temporary construction facilities such as offices, storage areas, and workshops over the entire project duration. Existing models do not guarantee global optimal solutions because they focus on optimizing the planning and layout of successive construction stages in a chronological order, without considering the future implications of layout decisions made in early stages. This paper presents the development of an approximate dynamic programming model that is capable of searching for and identifying global optimal dynamic site layout plans. The model applies the concepts of approximate dynamic programming to estimate the future effects of layout decisions in early stages on future decisions in later stages. The model is developed in three main phases: (1) formulating the decision variables, geometric constraints, and objective function of the dynamic site layout planning problem; (2) modeling the problem using approximate dynamic programming; and (3) implementing and evaluating the performance of the model. An evaluation example is analyzed to illustrate the use of the model and demonstrate its capabilities in generating global optimal solution for dynamic site layout planning of construction projects.  相似文献   

11.
Layout of temporary construction facilities (objects) is an important activity during the planning process of construction projects. The construction area layout is a complex problem whose solution requires the use of analytical models. Existing popular models employ genetic algorithms that have proven to be useful tools in generating near optimal site layouts. This paper presents an alternative approach based on mathematical optimization that offers several important features and generates a global optimal solution. The construction area consists of an unavailable area that includes existing facilities (sites) and available area in which the objects can be located. The available area is divided into regions that are formulated using binary variables. The locations of the objects are determined by optimizing an objective function subject to a variety of physical and functional constraints. The objective function minimizes the total weighted distance between the objects and the sites as well as among the objects (if desired). The distance can be expressed as Euclidean or Manhattan distance. Constraints that ensure objects do not overlap are developed. The new approach, which considers a continuous space in locating the objects simultaneously, offers such capabilities as accommodating object adjacency constraints, facility proximity constraints, object–region constraints, flexible orientation of objects, visibility constraints, and nonrectangular objects, regions, and construction areas. Application of the model is illustrated using two examples involving single and multiple objects. The proposed model is efficient and easy to apply, and as such should be of interest to construction engineers and practitioners.  相似文献   

12.
Described in this paper is a novel approach to four-dimensional (4D) computer-aided design (CAD). It involves a two-way symbiotic relationship between three-dimensional (3D) CAD software and a software implementation of linear planning that includes the ability to define a project product model and associate it with the process model. Strengths of the approach include the ability to readily modify construction sequences and examine their consequences using 4D CAD, and the ability to treat very large scale projects marked by significant repetition of their components. By building on a shared image of the project product model from both a design and construction perspective, the CAD model can be structured in a way that facilitates communication with the scheduling software and vice versa. Various challenges involved in making the 2-way process work are described, including consistency of product representation in the CAD and scheduling models, and the need to group CAD components at different levels of detail and locations to reflect the kinds of aggregation found in schedule representations of a project. The benefits of the approach include the ease with which different scheduling strategies can be explored and visualized, the links between 3D objects and activities can be maintained, and the completeness of the product model representations can be validated. A case study is used to illustrate the approach adopted and the challenges involved.  相似文献   

13.
In 8 experiments, the authors examined the use of representations of self-to-object or object-to-object spatial relations during locomotion. Participants learned geometrically regular or irregular layouts of objects while standing at the edge or in the middle and then pointed to objects while blindfolded in 3 conditions: before turning (baseline), after rotating 240° (updating), and after disorientation (disorientation). The internal consistency of pointing in the disorientation condition was equivalent to that in the updating condition when participants learned the regular layout. The internal consistency of pointing was disrupted by disorientation when participants learned the irregular layout. However, when participants who learned the regular layout were instructed to use self-to-object spatial relations, the effect of disorientation on pointing consistency appeared. When participants who learned the irregular layout at the periphery of the layout were instructed to use object-to-object spatial relations, the effect of disorientation disappeared. These results suggest that people represent both self-to-object and object-to-object spatial relations and primarily use object-to-object spatial representation in a regular layout and self-to-object spatial representation in an irregular layout. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
This paper presents a new approach that allows automated recognition of three-dimensional (3D) computer-aided design (CAD) objects from 3D site laser scans. This approach provides a robust and efficient means to recognize objects in a scene by integrating planning technologies, such as multidimensional CAD modeling, and field technologies, such as 3D laser scanning. Using such an approach, it would be possible to visualize the 3D status of a project and automate some tasks related to project control. These tasks include 3D progress tracking, productivity tracking, and construction dimensional quality assessment and quality control. This paper provides an overview of the developed approach and demonstrates its performance in object recognition and project 3D status visualization, with data collected from a construction job site.  相似文献   

15.
Layout of temporary facilities on a construction site is essential to enhancing productivity and safety, and is a complex issue due to the unique nature of construction. This paper proposes a particle swarm optimization (PSO)-based methodology to solve the construction site unequal-area facility layout problem. A priority-based particle representation of the candidate solutions to the layout problem is proposed. The particle-represented solution in terms of priorities should be transformed to the specific layout plan with consideration of nonoverlap and geometric constraints. In addition, a modified solution space boundary handling approach is proposed for controlling particle updating with regard to the priority value range. Computational experiments are carried out to justify the efficiency of the proposed method and investigate its underlying performances. This study aims at providing an alternative and effective means for solving the construction site unequal-area layout problem by utilizing the PSO algorithm.  相似文献   

16.
This paper proposes a case-based reasoning (CBR) approach to construction hazard identification that facilitates systematic feedback of past knowledge in the form of incident cases and hazard identification. This paper focuses on two of the key components of the CBR approach: (1) a detailed knowledge representation scheme, developed based on the modified loss causation model, to codify incident cases and past hazard identification and (2) an intelligent retrieval mechanism that can automatically retrieve relevant past cases. The detailed knowledge representation scheme presented herein is designed to model both incident cases and hazard identification so that both types of knowledge repository can be retrieved simultaneously and adapted for use. The scheme also includes a linguistic structure used to facilitate indexing of cases. The retrieval mechanism is based on the concept of similarity scoring. In this paper, a novel scoring technique based on semantic networks is presented. A case study is presented to demonstrate and validate the proposed approach.  相似文献   

17.
Selecting construction methods, scheduling activities, and planning the use of site space are key to constructing a project efficiently. Site layout and activity scheduling have been tackled as independent problems. Their interdependence is often ignored at the planning stage and may be dealt with—if at all—when construction is underway. Problems that may have had easy solutions if dealt with earlier, may then be expensive to remedy. This paper addresses the combined problem termed “space scheduling” and presents an algorithmic time-space trade-off model for adjusting activity durations and start dates to decrease the need for space over congested time periods. The model characterizes resource space requirements over time and establishes a time-space relationship for each activity in the schedule, based on alternative resource levels. An example illustrates the presented algorithm that generates a feasible space schedule.  相似文献   

18.
This paper describes research that investigated the application of the global positioning system and 3 degree-of-freedom (3-DOF) angular tracking to address the registration problem during interactive visualization of construction graphics in outdoor augmented reality (AR) environments. The global position and the three-dimensional (3D) orientation of a user’s viewpoint are tracked, and this information is reconciled with the known global position and orientation of superimposed computer-aided design (CAD) objects. Based on this computation, the relative translation and axial rotations between the user’s viewpoint and the CAD objects are continually calculated. The relative geometric transformations are then applied to the CAD objects inside a virtual viewing frustum that is coincided with the real world space that is in the user’s view. The result is an augmented outdoor environment where superimposed graphical objects stay fixed to their real world locations as the user navigates. The algorithms are implemented in a software tool called UM-AR-GPS-ROVER that is capable of interactively placing static and dynamic 3D models at any location in outdoor augmented space. The concept and prototype are demonstrated with an example in which scheduled construction activities for the erection of a structural steel frame are graphically simulated in outdoor AR.  相似文献   

19.
Site layout planning is a complicated issue because of the vast number of trades and interrelated planning constraints. To unfold its complexity, this paper aims to confine the study to a particularly defined area of construction: the structural concrete-frame construction stage of public housing projects. In this study, optimization of the tower crane and supply locations is targeted, as they are the major site facilities for high-rise building construction. A site layout genetic algorithm model is developed and a practical example is presented. The optimization results of the example are very promising and demonstrate the application value of the model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号