首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Formal stochastic simulation study has been recognized as a remedy for the shortcomings inherent to classic critical path method (CPM) project evaluation and review technique (PERT) analysis. An accurate and efficient method of identifying critical activities is essential for conducting PERT simulation. This paper discusses the derivation of a PERT simulation model, which incorporates the discrete event modeling approach and a simplified critical activity identification method. This has been done in an attempt to overcome the limitations and enhance the computing efficiency of classic CPM∕PERT analysis. A case study was conducted to validate the developed model and compare it to classic CPM∕PERT analysis. The developed model showed marked enhancement in analyzing the risk of project schedule overrun and determination of activity criticality. In addition, the beta distribution and its subjective fitting methods are discussed to complement the PERT simulation model. This new solution to CPM network analysis can provide project management with a convenient tool to assess alternative scenarios based on computer simulation and risk analysis.  相似文献   

2.
Construction scheduling is the process of devising schemes for sequencing activities. A realistic schedule fulfills the real concerns of users, thus minimizing the chances of schedule failure. The minimization of total project duration has been the concept underlying critical-path method/program evaluation and review technique (CPM/PERT) schedules. Subsequently, techniques including resource management and time-cost trade-off analysis were developed to customize CPM/PERT schedules in order to fulfill users’ concerns regarding project resources, cost, and time. However, financing construction activities throughout the course of the project is another crucial concern that must be properly treated otherwise, nonrealistic schedules are to be anticipated. Unless contractors manage to procure adequate cash to keep construction work running according to schedule, the pace of work will definitely be relaxed. Therefore, always keeping scheduled activities in balance with available cash is a potential contribution to producing realistic schedules. This paper introduces an integer-programming finance-based scheduling method to produce financially feasible schedules that balance the financing requirements of activities at any period with the cash available during that same period. The proposed method offers twofold benefits of minimizing total project duration and fulfilling finance availability constraints.  相似文献   

3.
In this paper, a practical method is developed in an attempt to address the fundamental matters and limitations of existing methods for critical-path method (CPM) based resource scheduling, which are identified by reviewing the prior research in resource-constrained CPM scheduling and repetitive scheduling. The proposed method is called the resource-activity critical-path method (RACPM), in which (1) the dimension of resource in addition to activity and time is highlighted in project scheduling to seamlessly synchronize activity planning and resource planning; (2) the start/finish times and the floats are defined as resource-activity attributes based on the resource-technology combined precedence relationships; and (3) the “resource critical” issue that has long baffled the construction industry is clarified. The RACPM is applied to an example problem taken from the literature for illustrating the algorithm and comparing it with the existing method. A sample application of the proposed RACPM for planning a footbridge construction project is also given to demonstrate that practitioners can readily interpret and utilize a RACPM schedule by relating the RACPM to the classic CPM. The RACPM provides schedulers with a convenient vehicle for seamlessly integrating the technology/process perspective with the resource use perspective in construction planning. The effect on the project duration and activity floats of varied resource availability can be studied through running RACPM on different scenarios of resources. This potentially leads to an integrated scheduling and cost estimating process that will produce realistic schedules, estimates, and control budgets for construction.  相似文献   

4.
Resource calendars specify nonworking days of driving resources involved in construction projects. As part of the resource availability constraints in critical path method (CPM) scheduling, resource calendars may postpone activity start time, extend activity duration, and hence prolong the total project duration. Ultimately, resource calendars bring about changes to the critical path identification. Research has yet to address how to incorporate the effects of multiple resource calendars on the total float determination. In this research, the popular P3 software is used as a tool for investigating the current practice of CPM scheduling under resource limit and calendar constraints. We assess P3’s advanced resource scheduling functions (including resource leveling and resource calendars) and identify P3’s potential errors in total float determination. Further, we propose a new method based on the forward pass analysis alone for accurately evaluating activity total float subject to resource calendar constraints. The application of the new method is illustrated with an activity-on-node case and a precedence-diagram-method case, with the results compared against those produced from P3. Our research has elucidated on some critical issues of resource-constrained scheduling in the application domain of construction project management. The findings will provide useful input for the vendors and users of the CPM software—which is not limited to P3—to improve the scheduling methodology as well as the accuracy of the resulting project schedules.  相似文献   

5.
This paper presents the development of a novel probabilistic scheduling model that enables fast and accurate risk evaluation for large-scale construction projects. The model is designed to overcome the limitations of existing probabilistic scheduling methods, including the inaccuracy of the program evaluation and review technique (PERT) and the long computational time of the Monte Carlo simulation method. The model consists of three main modules: PERT model; fast and accurate multivariate normal integral method; and a newly developed approximation method. The new approximation method is designed to focus the risk analysis on the most significant paths in the project network by identifying and removing insignificant paths that are either highly correlated or have high probability of completion time. The performance of the new model is analyzed using an application example. The results of this analysis illustrate that the new model was able to reduce the computational time for a large-scale construction project by more than 94% while keeping the error of its probability estimates to less than 3%, compared with Monte Carlo Simulation methods.  相似文献   

6.
While the critical path method (CPM) has been useful for scheduling construction projects, years of practice and research have highlighted serious drawbacks that hinder its use as a decision support tool. This paper argues that many of CPM drawbacks stem from the rough level of detail at which the analysis is conducted, where activities’ durations are considered as continuous blocks of time. The paper thus proposes a new critical path segments (CPS) mechanism with a finer level of granularity by decomposing the duration of each activity into separate time segments. Three cases are used to prove the benefits of using separate time segments in avoiding complex network relationships, accurately identifying all critical path fluctuation, better allocation of limited resources, avoiding multiple-calendar problems, and accurate analysis of project delays. The paper discusses the proposed CPS mechanism and comments on several issues related to its calculation complexity, its impact on existing procedures, and future extensions. This research is more beneficial to researchers and has the potential to revolutionize scheduling computations to resolve CPM drawbacks.  相似文献   

7.
Due to an increasingly competitive environment, construction companies are becoming more sophisticated, narrowing their focus, and becoming specialists in certain types of construction. This specialization requires more focused scheduling tools that prove to be better for certain type of projects. The critical path method (CPM) is the most utilized scheduling tool in the construction industry. However, for certain types of projects, CPM's usefulness decreases, because it becomes complex and difficult to use and understand. Alternative scheduling tools designed to be used with specific types of projects can prove to be more practical than CPM solutions. This paper provides a comparison of the CPM and a specialized tool, the linear scheduling model, by identifying critical attributes needed by any scheduling tool both at the higher management level and at the project level. Two project examples are scheduled with each method, and differences are discussed. Conclusions support that specialization of scheduling tools could be beneficial for the project manager and the project.  相似文献   

8.
Linear scheduling methods provide an alternative way of scheduling repetitive projects, to the commonly used network methods. Critical path identification is a major attribute for both methods; therefore, it is very important for practitioners to understand the function of the two methods in this area. The present paper compares the critical path of the recently developed Kallantzis-Lambropoulos repetitive project model against the network scheduling critical path method (CPM), aiming at delving into and pointing out the differences and similarities between them. Initially, the rules for transforming the linear project into an equivalent CPM network are proposed. Then, the rules are applied on a sample linear project. Due to the additional constraint for maintaining resource continuity that the linear method takes into account, the critical paths vary. The constraint is subsequently removed from selected activities and comparison is repeated; the critical paths then coincide. In order to validate the findings and ensure impartiality of results, a random linear project generator is developed. A group of twenty-five random linear projects and their equivalent networks is produced. Their critical paths are analyzed, compared and classified. Conclusions support that the proposed comparison could be beneficial to users of linear scheduling methods, while the random project generator can serve other related research.  相似文献   

9.
Network scheduling is typically performed in three phases—network creation, analysis, and development. Although the critical path method (CPM) constitutes a well-established logic in network analysis, human intuition and experience are required for the creation and development of the network. Because of this, a variety of alternative CPM networks can be created in scheduling the same project. The use of the most desirable network can lead to a considerable reduction in the duration of the projects. This can be achieved by accurately identifying activities and linking them in an appropriate manner. Many researchers insisted that network scheduling lacks efficiency in scheduling repetitive-unit projects. Because of this, many scheduling methods have been developed to model such types of projects. However, most are not network based and require a large amount of input data, although most leading scheduling software remains network based and field engineers desire networklike forms of the schedule. In an effort to overcome this limitation, this paper presents a procedure for creating and developing networks for repetitive-unit projects. This network-based model incorporates a two-dimensional arrangement of activities, resource-space coordinates, for ease in creating a network and optimizes the activity linkage, thus resulting in the most desirable results. The model is applied to a typical repetitive-unit project to illustrate the use and capabilities of the model. The model can serve as an aid for inexperienced schedulers in creating a network as well as its optimization. An experienced scheduler can also check the desirability of his or her own created network via the use of this model.  相似文献   

10.
Traditional scheduling and progress control techniques such as bar charts and the critical path method (CPM) fail to provide information pertaining to the spatial aspects of a construction project. A system called PMS-GIS (Progress Monitoring System with Geographical Information Systems) was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. In PMS-GIS, the architectural design is executed using a computer-aided drafting (CAD) program (AutoCAD), the work schedule is generated using a project management software (P3), the design and schedule information (including percent complete information) are plugged into a GIS package (ArcViewGIS), and for every update, the system produces a CPM-generated bar chart alongside a 3D rendering of the project marked for progress. The GIS-based system developed in this study helps to effectively communicate the schedule∕progress information to the parties involved in the project, because they will be able to see in detail the spatial aspects of the project alongside the schedule.  相似文献   

11.
This paper introduces a software, Stochastic Project Scheduling Simulation (SPSS), developed to measure the probability to complete a project in a certain time specified by the user. To deliver a project by a completion date committed to in a contract, a number of activities need to be carried out. The time that an entire project takes to complete and the activities that determine total project duration are always questionable because of the randomness and stochastic nature of the activities’ durations. Predicting a project completion probability is valuable, particularly at the time of bidding. The SPSS finds the longest path in a network and runs the network a number of times specified by the user and calculates the stochastic probability to complete the project in the specified time. The SPSS can be used by a contractor: (1) to predict the probability to deliver the project in a given time frame and (2) to assess its capabilities to meet the contractual requirement before bidding. The SPSS can also be used by a construction owner to quantify and analyze the risks involved in the schedule. The benefits of the tool to researchers are: (1) to solve program evaluation and review technique problems; (2) to complement Monte Carlo simulation by applying the concept of project network modeling and scheduling with probabilistic and stochastic activities via a web based Java Simulation which is operateable over the Internet, and (3) to open a way to compare a project network having different distribution functions.  相似文献   

12.
Quantifying and minimizing the risks associated with delays in the construction industry are the main challenges for all parties involved. Float loss impact in noncritical activities is one of the complicated delays to assess on a project’s duration and cost. This is due to the fact that the deterministic critical path method cannot cope with such delays unless they exceed the total float values. Further, stochastic analysis, which is used in this research to assess the impact of such delays, is perceived by many planners to be complicated and time consuming. This paper presents a method to control the risks associated with float loss in construction projects. The method uses a recently developed multiple simulation analysis technique that combines the results of cost range estimates and stochastic scheduling, using Monte Carlo simulation. The proposed method quantifies the float loss impact on project duration and cost. Least-squares nonlinear regression is used to convert the stochastic results into a polynomial function that quantifies the float loss impact by relating directly the float loss value to project duration and cost at a specified confidence level.  相似文献   

13.
Simulation modeling is important in predicting the productivity of construction operations and the performance of project schedules. It would be desirable if operation and project models are vertically integrated in practice. However, existing discrete event simulation systems do not allow integrating operation and project models. This paper introduces an integrated simulation system named “Construction Operation and Project Scheduling” (COPS). COPS analyzes the productivity of construction operations as well as the performance of a project schedule individually and jointly. It creates operation models, maintains these models in its operation model library, conducts sensitivity analysis with different resource combinations, finds the optimal resource combination that satisfies the user’s requirements relative to hourly production and hourly cost of the operation, feeds this information into a project schedule, and executes stochastic simulation-based scheduling. A case study is presented to demonstrate this integrated simulation system.  相似文献   

14.
While critical-path method (CPM) scheduling has been around since the 1950s, its application in the construction industry has still not received 100% acceptance or consistency in how it is used. Project controls, and CPM scheduling in particular, have gone unchanged in the standards arena with little focus for a common understanding and recognition of what is required for CPM schedule development, implementation, and use. In recent years, little research has been conducted relative to the use of CPM and its benefits. In order to determine how the industry views its applicability and usage, a survey was developed for the stakeholders in the construction industry. This paper summarizes extensive research that was performed of the construction industry relative to the use of CPM scheduling, its applicability and its acceptance in the execution of today’s constructed projects. The research obtained the stakeholders’ views on the use and effectiveness of CPM scheduling; the necessary qualifications of scheduling personnel; and opinions relative to whether standards and/or best practices are necessary. The paper discusses the different views of the stakeholders and recommendations as to how consistency can be obtained in the use of CPM scheduling in order to improve the construction industry.  相似文献   

15.
This study presents a new methodology for evaluating at-completion project performance status. This new procedure uses the concept of stochastic S curves (SS curves) to determine forecasted project estimates as an alternative to using deterministic S curves and traditional forecasting methods. A simulation approach is used for generating the stochastic S curves, and it is based on the defined variability in duration and cost of the individual activities within the process. Stochastic S curves provide probability distributions for the budget and time values required to complete the project at every selected point of intermediate completion. Final project performance is determined by comparing the planned budget and project duration, with the expected forecasted final cost and elapsed time, respectively. The SS-curve methodology permits objective evaluation of project performance without the limitations inherent in a deterministic approach. The probabilistic characteristics of this approach enable users to more accurately determine at-completion cost and duration variations and evaluate the performance improvement of proposed corrective actions.  相似文献   

16.
Published criticism in recent years concerning the inadequacy of Critical Path Method (CPM) as a project planning tool is identified and grouped under six major headings with reference to the publications in which the criticism were contained. These are answered from the writer's field experience and from experiences published by other authors. The object of the analysis is to see whether or not CPM as a project planning tool can meet the required functions of planning in construction, including consideration of legal and contractual framework and the complex and interdisciplinary nature of the project environment. The analysis reveals that, despite numerous criticism, project and construction planning should be done using CPM scheduling. Main factors affecting successful planning are realistic estimation of the productivity of crews in the context of expected job‐management efficiency conditions, and inclusion of sufficient time buffers between dissimilar trades. CPM is found to be equally useful as a planning tool for linear or repetitive projects. The limitations of this technique are identified in terms of the defined planning functions in the engineering phase of capital projects. A broad model for management of the engineering phase in revenue‐generating projects is suggested.  相似文献   

17.
物流仿真技术在炼钢连铸调度计划中的应用   总被引:1,自引:0,他引:1  
物流仿真技术的应用研究是国内外研究的一个热点.首先简要介绍了炼钢连铸物流研究中的一些理论和方法,分析了炼钢连铸生产计划与调度的过程、工艺和特征等.然后针对炼钢连铸调度的复杂混合系统的特性,建立了各物理对象的Petri模型,进一步根据炼钢连铸的调度目的,开发了基于组件技术及其体系架构的炼钢连铸物流仿真系统.最后给出了一个调度计划的实例,说明了物流仿真系统的应用效果.  相似文献   

18.
This study evaluates the resource-constrained critical path method (RCPM), which the writers have recently proposed. RCPM establishes a critical path method (CPM)-like, resource-constrained schedule by resource-dependent activity relationships (or resource links) that the five-step RCPM technique identifies. With its CPM-like feature, RCPM provides the critical path and float data that are not available in traditional resource-constrained scheduling techniques. In addition, RCPM provides more flexibility to the schedule through identified alternative schedules, which allow certain activities to be executed beyond their late finish times without delaying the project completion. This paper evaluates the RCPM’s performance by comparing it with five related previous studies. A brief review of each study is also included in this paper. This comparison shows that RCPM performs well in identifying resource links and alternative schedules, compared to other methods. This study is of interest to academics because it highlights the advantages and disadvantages of different algorithms that have attempted to overcome present problems in traditional resource-constrained scheduling techniques.  相似文献   

19.
The economics of a materials management system is defined by the size of the shipments, the scheduling strategy that allows contractors to handle uncertainty and variability in the supply chain, and the timing of the shipments, which in turn depend on the environment in which the project is taking place. This study presents a simulation-based decision support system to assist contractors in selecting the most economical rebar management system prior to the start of construction by recommending lot sizes (large, small), a scheduling strategy (optimistic, neutral, pessimistic), and buffer sizes (large, medium, small) given the conditions of the project. This model is of benefit to contractors and researchers because it generates the probable cost of inventory of 18 alternative rebar management systems ranging from just in case (JIC) to just in time (JIT) and including different variations in between. It allows contractors to select the alternative with least cost of inventory at the planning stages of a project. The simulation model was tested by using actual data obtained from a trade center project in Istanbul, Turkey. As expected, the test indicated that JIC was the most economical rebar management system in a case study conducted in a developing country, as it generated a savings of 4.8% over JIT.  相似文献   

20.
Repetitive scheduling methods are more effective than traditional critical path methods in the planning and scheduling of repetitive construction projects. Nevertheless, almost all the repetitive scheduling methods developed so far have been based on the premise that a repetitive project is comprised of many identical production units. In this research a non-unit-based algorithm for the planning and scheduling of repetitive projects is developed. Instead of repetitive production units, repetitive or similar activity groups are identified and employed for scheduling. The algorithm takes into consideration: (1) the logical relationship of activity groups in a repetitive project; (2) the usage of various resource crews in an activity group; (3) the maintaining of resource continuity; and (4) the time and cost for the routing of resource crews. A sample case study and a case study of a sewer system project are conducted to validate the algorithm, as well as to demonstrate its application. Results and findings are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号