首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.  相似文献   

2.
A small element-to-element pitch (~.5λ) is conventionally required for phased array ultrasound transducers to avoid large grating lobes. This constraint can introduce many fabrication difficulties, particularly in the development of highfrequency phased arrays at operating frequencies greater than 30 MHz. In this paper, a new transmit beamforming technique along with sign coherence factor (SCF) receive beamforming is proposed to suppress grating lobes in large-pitch phased-array transducers. It is based on splitting the transmit aperture (N elements) into N/K transmit elements and receive beamforming on all N elements to reduce the temporal length of the transmit grating lobe signal. Therefore, the use of synthetic aperture beamforming, which can introduce relative phase distortions between the echoes received over many transmit events, can be avoided. After each transmit-receive event, the received signals are weighted by the calculated SCF to suppress the grating lobes. After pulsing all sub-apertures, the RF signals are added to generate one line of the image. Simulated 2-way radiation patterns for different K values show that grating lobes can be suppressed significantly at different steering angles. Grating lobes can be suppressed by approximately 20 dB with K = 2 at steering angles greater than 25° and an element pitch greater than 0.75λ. A technique for determining the optimal transmit sub-apertures has been developed.  相似文献   

3.
《IEEE sensors journal》2008,8(11):1755-1762
An ultrasonic phased array device is developed to provide mobility aid for visually impaired people. To perform acoustic imaging, two different linear transducer arrays are constructed using commercially available transducers. The transmitter and receiver arrays are formed with six and four transducer elements, respectively. Individual transducer elements are discrete components with a radius of 1.9 wavelengths and a half-power beamwidth of 43$^{circ}$ at 40.8 kHz center frequency. The transmitter array is formed by aligning the transducers with minimum spacing between the elements. Even this placement leads to the occurrence of unwanted grating lobes in the array response and decreases the field-of-view to 30$^{circ}$ . To eliminate these grating lobes, the elements of the receiver array are placed with a different spacing. Forming the receiver and transmitter arrays with nonidentical element spacing makes the grating lobes to appear at different places. Since the response of the overall system is the product of the directivity patterns of receiver and transmitter arrays, the grating lobes diminish for the overall system and the field-of-view increases.   相似文献   

4.
Two-dimensional (2-D) arrays of squared matrix have maximum periodicity in their main directions; consequently, they require half wavelength (lambda/2), interelement spacing to avoid grating lobes. This condition gives rise to well-known problems derived from the huge number of array elements and from their small size. In contrast, 2-D arrays with curvilinear configuration produce lower grating lobes and, therefore, allow the element size to be increased beyond lambda/2. Using larger elements, these arrays have the advantage of reducing the number of elements and of increasing the signal-to-noise ratio (SNR). In this paper, the beamforming properties of segmented annular phased arrays are theoretically analyzed and compared with the equivalent squared matrix array. In the first part, point-like elements are considered in order to facilitate the field analysis with respect to the array structure. Afterward, the effect of the element size on the steered beam properties also is presented. In the examples, it is shown that the segmented annular array has notably lower grating lobes than the equivalent squared matrix array and that it is possible to design segmented annular arrays with interelement distance higher than lambda whose beam characteristics are perfectly valid for volumetric imaging applications.  相似文献   

5.
The fabrication of a dense (one-half wavelength element spacing) two-dimensional (2D) transducer array suitable for medical ultrasound imaging is unrealistic using existing technology. Consequently, there is interest in developing sparse 2D transducer arrays. In this paper, we present the results of a study looking at the broad-bandwidth radiation patterns of 72 different sparse 2D vernier arrays. Suppression of grating lobes is achieved by choosing a different arrangement of transmit and receive elements using an analogy with a vernier scale. The broad-bandwidth radiation patterns were investigated by simulating volumetric sector scan of a point target. We summarize these results by deriving a set of design curves that predicts the minimum number of elements, element spacing, and apodization required for a desired beam width and maximum secondary lobe. The results show that a sparse vernier array can be designed with significantly lower average and peak secondary lobes compared with a sparse random array with the same number of elements and aperture size  相似文献   

6.
Developing transducer arrays for high frequency medical imaging is complicated because of the extremely small size and spacing of the array elements. For example, a 50 MHz linear phased array requires a center-to-center spacing of only 15 mum (one-half wavelength in water) to avoid the formation of grating lobes in the radiation pattern of the array. Fabricating an array with these dimensions is difficult using conventional technology. A split aperture design that permits much larger element spacing (3 to 4 times) while avoiding the formation of grating lobes is described. The 3-D radiation pattern of a 1.9x1.4 mm, 50-MHz split aperture linear phased array with 33 transmit elements and 33 receive elements has been evaluated theoretically. The azimuthal beam width is 90 mum at a distance of 4.0 mm. Grating lobes are suppressed by at least 60 dB at distances >4.0 mm (~f/2). The elevation beam width is 220 mum at 4.0 mm, and a useful depth of field over the axial range from 4 to 10 mm is obtained.  相似文献   

7.
对于均匀间隔线列阵,由采样定理可知,当阵元间距超过信号波长的一半时,指向性图会产生与目标等高的栅瓣。为了获得高分辨率,同时避免栅瓣出现,需要大量的传感器。为了减少设备复杂度,可以采用稀疏布阵技术,以较少的阵元获得较高的分辨力。将模拟退火算法应用到稀疏矢量水听器阵的设计中。通过优化阵元位置控制指向性图,可以获得无栅瓣的指向性图。给出了优化后的稀疏矢量阵与均匀间隔矢量阵的指向性图比较。  相似文献   

8.
An annular array with variable focus, used in focused ultrasound surgery, generates grating lobes responsible for undesirable lesions. It is known that the amplitude and the location of the lobes depend on both the geometry and the frequency of the transducer. A new procedure based on the use of a wide-band CW signal, i.e., a signal phase modulated by a pseudorandom code, is proposed to reduce the amplitude of these lobes. The theoretical study enables us to determine the location and the amplitude of these lobes and to simulate the effect of the transmitted signal bandwidth. In particular, a simple analytical relation gives the intensity ratio between the grating lobes and the main lobe. This equation shows that this ratio is inversely proportional to the number of rings and to the bandwidth of the transmitted signal. A system was developed and tested with two transducer arrays of 35- and 150-mm diameter, respectively. The simulations and experiments demonstrate the validity of the theoretical study and the efficacy of the proposed procedure. In conclusion, it is possible to reduce the grating lobes without geometric modification of the array by increasing the bandwidth of the transmitted signal  相似文献   

9.
A phased-array applicator geometry for deep localized hyperthermia is presented. The array consists of rectangular transducer elements forming a section of a cylinder that conforms to the body portals in the abdominal and pelvic regions. Focusing and scanning properties of the cylindrical-section array are investigated in homogeneous lossy media using appropriate computer simulations. The characteristic focus of this array is shown to be spatially limited in both transverse and longitudinal directions with intensity gain values suitable for deep hyperthermia applications. The ability of the cylindrical-section phased array to generate multiple foci using the field conjugation method is examined. The effect of the grating lobes on the power deposition pattern of the scanned field is shown to be minimal. Steady-state temperature distributions are simulated using a three-dimensional thermal model of the normal tissue layers surrounding a tumor of typical volume. The advantages and the limitations of this array configuration are discussed.  相似文献   

10.
矢量线阵MUSIC算法抗空间混叠性能研究   总被引:2,自引:2,他引:0  
利用矢量线阵可以提高对目标参数估计的性能,探讨了矢量线阵MUSIC算法的抗左右舷模糊性能和抗空间混叠性能。理论研究和外场试验结果表明,矢量线阵消除了声压线阵MUSIC方位谱的左右舷模糊,在阵元个数保持不变的条件下,空间降采样时,矢量线阵MUSIC空间谱不仅提高了方位估计的精度,而且能够抗空间混叠,在相同的条件下.矢量线阵MUSIC空间谱的抗空间混叠性能明显优于矢量阵常规波束形成方法。  相似文献   

11.
A method for real-time three-dimensional (3-D) ultrasound imaging using a mechanically scanned linear phased array is proposed. The high frame rate necessary for real-time volumetric imaging is achieved using a sparse synthetic aperture beamforming technique utilizing only a few transmit pulses for each image. Grating lobes in the two-way radiation pattern are avoided by adjusting the transmit element spacing and the receive aperture functions to account for the missing transmit elements. The signal loss associated with fewer transmit pulses is minimized by increasing the power delivered to each transmit element and by using multiple transmit elements for each transmit pulse. By mechanically rocking the array, in a way similar to what is done with an annular array, a 3-D set of images can be collected in the time normally required for a single image.  相似文献   

12.
激光超声技术具有非接触、检测效率高等优点,在无损检测领域受到广泛关注;充分利用激光超声技术的高空间分辨率特性,结合密集型矩形阵列和激光Lamb波技术进行板中缺陷检测。采用连续小波变换对频带宽、时域分辨率低的激光Lamb波信号进行提取,得到特定频率下具有高时域分辨率的窄带信号;利用线性映射补偿技术消除所提取窄带信号中的频散,消除频散的信号用于缺陷成像;最后,结合幅值成像技术和符号相干因子成像技术对频散补偿后的信号进行处理,实现铝板中缺陷的成像和定位。在此基础上,进一步对不同的阵元数量和阵元间距对密集型矩形阵列指向性和缺陷成像质量的影响进行分析。当阵元数量为16,阵元间距为一个Lamb波波长时,主瓣宽度较窄且没有栅瓣出现,缺陷成像质量得到有效提高。  相似文献   

13.
In this paper, intravascular ultrasound (IVUS) images acquired with a 64-element array transducer using a multistatic acquisition scheme are presented. The images are reconstructed from a collection of pulse-echo measurements using a synthetic aperture array imaging technique. The main limitations of IVUS imaging are a poor lateral resolution and elevated grating lobes caused by the imaging geometry. We propose a Synthetic Aperture Focusing Technique (SAFT), which uses a limited number of A-scan signals. The focusing process, which is performed in the Fourier domain, requires far less computation time than conventional delay-and-sum methods. Two different reconstruction kernel functions have been derived and are compared for the processing of experimental data  相似文献   

14.
A driving system has been designed for phased array ultrasound applicators. The system is designed to-operate in the bandwidth 1.2 to 1.8 MHz, with independent channel power control up to 60 W (8 bit resolution) for each array element. To reduce power variation between elements, the system utilizes switching regulators in a feedback loop to automatically adjust the DC supply of a class D/E power converter. This feedback reduces the RF electrical power variation from 20% to 1% into a 16 element array. DC-to-RF efficiencies close to 70% for all power levels eliminates the need for large heat sinks. In addition to power control, each channel may be phase shifted 360 degrees with a minimum of 8 bit resolution. To ensure proper operation while driving ultrasound arrays with varying element sizes, each RF driving channel implements phase feedback such that proper phase of the driving signal is produced either at the amplifier output before the matching circuitry or after the matching circuitry at the transducer face. This feedback has been experimentally shown to increase the focal intensities by 20 to 25% of two tested phased arrays without array calibration using a hydrophone.  相似文献   

15.
Sparse 2-D arrays for 3-D phased array imaging--design methods   总被引:2,自引:0,他引:2  
One of the most promising techniques for limiting complexity for real-time 3-D ultrasound systems is to use sparse 2-D layouts. For a given number of channels, optimization of performance is desirable to ensure high quality volume images. To find optimal layouts, several approaches have been followed with varying success. The most promising designs proposed are Vernier arrays, but also these suffer from high peaks in the sidelobe region compared with a dense array. In this work, we propose new methods based on the principles of suppression of grating lobes to form symmetric and non-symmetric regular sparse periodic and radially periodic designs. The proposed methods extend the concept of sparse periodic layouts by exploiting either an increased number of symmetry axes or radial symmetry. We also introduce two new strategies to form designs with nonoverlapping elements. The performance of the new layouts range from the performance of Vernier arrays to almost that of dense arrays. Our designs have simplicity in construction, flexibility in the number of active elements, and the possibility of trade off sidelobe peaks against sidelobe energy.  相似文献   

16.
Computer modeling of spherical-section phased arrays for ultrasound surgery (tissue ablation) is described. The influence on performance of the number of circular elements (68 to 1024), their diameter (2.5 to 10 mm), frequency (1 to 2 MHz), and degree of sparseness in the array is investigated for elements distributed randomly or in square, annular, and hexagonal patterns on a spherical shell (radius of curvature, 120 mm). Criteria for evaluating the quality of the intensity distributions obtained when focusing the arrays both on and away from their center of curvature, and in both single focus and simultaneous multiple foci modes, are proposed. Of the arrays studied, the most favorable performance, for both modes, is predicted for 256 5-mm diameter, randomly distributed elements. For the single focus mode, this performed better than regular arrays of 255 to 1024 elements and, for the case of nine simultaneous foci produced on a coplanar 3x3 grid with 4-mm spacing, better than square, hexagonal, or annular distributed arrays with a comparable number of elements. Randomization improved performance by suppressing grating lobes significantly. For single focus mode, a several-fold decrease in the number of elements could be made without degrading the quality of the intensity distribution.  相似文献   

17.
The newly developed limited diffraction beams such as the Bessel beams and X waves have a large depth of field and approximate depth-independent property. They have possible applications in medical imaging, color Doppler imaging, tissue characterization, and nondestructive evaluation of materials, and in other wave related physical branches such as electromagnetics and optics. However, limited diffraction beams are currently produced with an annular array transducer that has to be steered mechanically. In this paper, we study the feasibility of steering these beams with a two-dimensional array, and show that there will be almost no distortion of beams if the effective aperture reduction of the array is properly compensated so that the beams have a constant transverse profile as they are steered. In addition, methods for reducing the complexity of the electronic multiplexing of the array elements are proposed. We also investigate the influences of the interelement distance and the size of array elements on the sidelobes and grating lobes of limited diffraction beams as the beams are steered. They are similar to those previously reported for conventional beams.  相似文献   

18.
Currently, most phased-array systems intended for therapy are one-dimensional (1-D) and use between 5 and 200 elements, with a few two-dimensional (2-D) systems using several hundred elements. The move toward lambda/2 interelement spacing, which provides complete 3-D beam steering, would require a large number of closely spaced elements (0.15 mm to 3 mm). A solution to the resulting problem of cost and cable assembly size, which this study examines, is to quantize the phases available at the array input. By connecting elements with similar phases to a single wire, a significant reduction in the number of incoming lines can be achieved while maintaining focusing and beam steering capability. This study has explored the feasibility of such an approach using computer simulations and experiments with a test circuit driving a 100-element linear array. Simulation results demonstrated that adequate focusing can be obtained with only four phase signals without large increases in the grating lobes or the dimensions of the focus. Experiments showed that the method can be implemented in practice, and adequate focusing can be achieved with four phase signals with a reduction of 20% in the peak pressure amplitude squared when compared with the infinite-phase resolution case. Results indicate that the use of this technique would make it possible to drive more than 10,000 elements with 33 input lines. The implementation of this method could have a large impact on ultrasound therapy and diagnostic devices.  相似文献   

19.
张天伟  陈航  杨虎 《声学技术》2008,27(6):816-820
介绍了一种小型化线列阵,阵结构与常规线列阵最大的不同在于阵元间距小于四分之一波长。通过理论分析和仿真计算优化了各阵元的最佳权系数,获得了良好的指向性,得到了实验的证明。小型化线列阵的指向性图具有四大特点:①单向性:仅在半空间出现一个轴对称的主波束,无栅瓣和次瓣。②端射特性:主波束出现在线阵的轴射方向。③超指向性:在阵的尺寸远小于二分之一波长条件下不仅可以获得良好的指向性图,并且波束宽度随阵元间距的减小而减小。④恒定束宽特性:在阵元间距小于八分之一波长条件下,波束宽度随频率变化非常平缓。这种小型化基阵也可用于大型基阵如拖曳阵和展开式体积阵的子基阵,进行低频宽带信号的检测。  相似文献   

20.
A computationally efficient method is presented for calculating field pressure distributions from a circular phased array transducer. This method employs a form of the rectangular radiator approach modified for use with the geometry of a circular array. The curved surface of the elements, radiating either continuous wave or pulsed excitation signals, is divided into incremental rectangular areas small enough so that the Fraunhofer approximation can be applied. Once the directivity of a single element is found, the array beam pattern can be calculated using superposition and suitable coordinate transformations. The validity of this approach is verified through comparisons with experimental data from a circular phased array. The results show that the location and amplitude of the grating lobes and main lobe width can be predicted with reasonable accuracy by using this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号