首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.  相似文献   

2.
Riboswitches are highly structured RNA elements that control gene expression by binding directly to small metabolite molecules. Remarkably, many of these metabolites contain negatively charged phosphate groups that contribute significantly to the binding affinity. An example is the thiamine pyrophosphate-sensing riboswitch in the 5'-untranslated region of the E. coli thiM mRNA. This riboswitch binds, in order of decreasing affinity, to thiamine pyrophosphate (TPP), thiamine monophosphate (TMP), and thiamine, which contain two, one, and no phosphate groups, respectively. We examined the binding of TPP and TMP to this riboswitch by using (31)P NMR spectroscopy. Chemical-shift changes were observed for the alpha- and beta-phosphate group of TPP and the phosphate group of TMP upon RNA binding; this indicates that they are in close contact with the RNA. Titration experiments with paramagnetic Mn(2+) ions revealed strong line-broadening effects for both (31)P signals of the bound TPP; this indicates a Mg(2+) binding site in close proximity and suggests that the phosphate group(s) of the ligand is/are recognized in a magnesium ion-mediated manner by the RNA.  相似文献   

3.
Influenza A virus (IAV) causes seasonal epidemics and sporadic pandemics, therefore is an important research subject for scientists around the world. Despite the high variability of its genome, the structure of viral RNA (vRNA) possesses features that remain constant between strains and are biologically important for virus replication. Therefore, conserved structural motifs of vRNA can represent a novel therapeutic target. Here, we focused on the presence of G-rich sequences within the influenza A/California/07/2009(H1N1) genome and their ability to form RNA G-quadruplex structures (G4s). We identified 12 potential quadruplex-forming sequences (PQS) and determined their conservation among the IAV strains using bioinformatics tools. Then we examined the propensity of PQS to fold into G4s by various biophysical methods. Our results revealed that six PQS oligomers could form RNA G-quadruplexes. However, three of them were confirmed to adopt G4 structures by all utilized methods. Moreover, we showed that these PQS motifs are present within segments encoding polymerase complex proteins indicating their possible role in the virus biology.  相似文献   

4.
Spontaneous covalent assembly of short RNA fragments has been proposed as a plausible prebiotically relevant pathway to a self‐reproducing system. We previously showed that the Azoarcus group I intron could self‐assemble from four RNA fragments. Here, we extended this fragmentation to five RNAs that averaged <40 nucleotides in length. We optimized this reaction and showed that a dehydration–rehydration sequence was the most effective means to date to shift the self‐assembly equilibrium from reactants to products.  相似文献   

5.
RNA molecules can adopt specific RNA triplex structures to execute critical biological functions. Human adenoviruses (HAdVs) are abundant pathogens encoding the essential, noncoding virus-associated RNA I (VA RNAI). Here, we employ a triplex-specific probing assay, based on the intercalating and cleaving agent benzoquinoquinoxaline 1, 10-phenanthroline (BQQ–OP), to unravel a potential RNA triplex formation in VA RNAI. The BQQ–OP cleavage of the pathogenic HAdV type 4 (HAdV-4) VA RNAI indicates that a potential triplex is formed involving the highly conserved stem 4 of the central domain and side stem 7. Further, the integrity of the HAdV-4 VA RNAI side stem 7 contributes to a potential triplex formation in vitro and virus growth in vivo. Collectively, we propose that the HAdV-4 VA RNAI can potentially form a biologically relevant triplex structure.  相似文献   

6.
The modular architecture of naturally occurring ribozymes makes them a promising class of structural platform for the design and assembly of three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.  相似文献   

7.
Noninvasive imaging of specific mRNAs in living subjects promises numerous biological and medical applications. Common strategies use fluorescently or radioactively labelled antisense probes to detect target mRNAs through a hybridization mechanism, but have met with limited success in living animals. Here we present a novel molecular imaging approach based on the group I intron of Tetrahymena thermophila for imaging mRNA molecules in vivo. Engineered trans-splicing ribozyme reporters contain three domains, each of which is designed for targeting, splicing, and reporting. They can transduce the target mRNA into a reporter mRNA, leading to the production of reporter enzymes that can be noninvasively imaged in vivo. We have demonstrated this ribozyme-mediated RNA imaging method for imaging a mutant p53 mRNA both in single cells and noninvasively in living mice. After optimization, the ribozyme reporter increases contrast for the transiently expressed target by 180-fold, and by ten-fold for the stably expressed target. siRNA-mediated specific gene silencing of p53 expression has been successfully imaged in real time in vivo. This new ribozyme-based RNA reporter system should open up new avenues for in vivo RNA imaging and direct imaging of siRNA inhibition.  相似文献   

8.
目的探讨沉默高尔基体α-甘露糖苷酶Ⅱ(Golgiα-mannosidaseⅡ,GMⅡ)基因的表达对人胃癌BGC-823细胞增殖与凋亡的影响。方法根据GenBank中登录的人GMⅡ基因mRNA序列及siRNA设计原则,设计了4条siRNA,并构建4个针对靶点的重组表达质粒pGPU6/GFP/Neo-1140、pGPU6/GFP/Neo-1303、pGPU6/GFP/Neo-1406和pGPU6/GFP/Neo-1817,同时合成阴性对照质粒pGPU6/GFP/Neo-shNC,经Lipofectamine 2000分别转染BGC-823细胞,通过RT-PCR及Western blot检测转染细胞中GMⅡ基因mRNA和蛋白的表达,筛选沉默效果最佳的质粒;经MTT试验、细胞周期分布分析、Hoechst33258和Annexin V-FITC/PI双染试验分别检测沉默GMⅡ基因对人BGC-823细胞增殖与凋亡的影响。结果 pGPU6/GFP/Neo-1303组GMⅡ基因mRNA和蛋白的表达明显低于空白对照组和阴性对照组(P<0.05),表明pGPU6/GFP/Neo-1303组沉默效果最好;与空白对照组和阴性对照组相比,pGPU6/GFP/Neo-1303组BGC-823细胞增殖抑制率明显升高(P<0.01),G1期细胞比例明显上升(P<0.05),S期细胞比例明显下降(P<0.01),细胞凋亡率明显升高(P<0.05)。结论已成功沉默BGC-823细胞中GMⅡ基因的表达,从而抑制BGC-823细胞的增殖并促进其凋亡,GMⅡ可能成为防治胃癌的新靶点。  相似文献   

9.
Fluorescence techniques for the investigation of biomolecules and their folding pathways require an efficient labeling strategy. A common method to internally label large RNAs involves the introduction of long loops for hybridization of fluorophore‐carrying DNA strands. Such loops often disturb the structure, and thus the functionality, of the RNA. Here we show, in a proof of concept study with a >600 nucleotide group II intron ribozyme, that the usage of the nucleic acid analogue peptide nucleic acid (PNA) is more efficient in several aspects, minimizing the required structural modifications of the RNA. We demonstrate by various methods, including smFRET, that much smaller concentrations and shorter PNAs can be applied, compared to DNA, for rapid and specific internal RNA labeling. The folding pathway and catalytic activity of this large ribozyme is only minimally affected by the PNA, but the background signal is significantly reduced.  相似文献   

10.
11.
RNA is a promising biomaterial for self‐assembly of nano‐sized structures with a wide range of applications in nanotechnology and synthetic biology. Several RNA‐based nanostructures have been reported, but most are unrelated to intracellular RNA, which possesses modular structures that are sufficiently large and complex to serve as catalysts to promote sophisticated chemical reactions. In this study, we designed dimeric RNA structures based on the Tetrahymena group I ribozyme. The resulting dimeric RNAs (tecto group I ribozyme; tecto‐GIRz) exhibit catalytic ability that depended on controlled dimerization, by which a pair of ribozymes can be activated to perform cleavage and splicing reactions of two distinct substrates. Modular redesign of complex RNA structures affords large ribozymes for use as modules in RNA nanotechnology and RNA synthetic biology.  相似文献   

12.
A 2′‐O‐methyl‐RNA oligonucleotide containing a single free 2′‐OH group flanking a branching phosphotriester linkage was prepared as a model for phosphate‐branched RNA by using an orthogonally protected dimeric phosphoramidite building block in solid‐phase synthesis. The strategy allows the synthesis of phosphate‐branched oligonucleotides, the three branches of which may be of any desired sequence. Hydrolytic reactions of the phosphotriester linkages in such oligonucleotides were studied at physiological pH in the presence (and absence) of various complementary oligonucleotides. The fully hybridized oligonucleotide model is an order of magnitude more stable than its single‐stranded counterpart, which, in turn, is an order of magnitude more stable than its trinucleoside phosphotriester core lacking any oligonucleotide arms. Furthermore, kinked structures obtained by hybridizing the phosphate‐branched oligonucleotide with partially complementary oligonucleotides are three to five times more stable than fully double‐stranded ones and only approximately three times less stable than the so‐called RNA X structure, which has been postulated to incorporate an RNA phosphotriester linkage. The results indicate that when the intrinsically unstable RNA phosphotriester linkage is embedded in an oligonucleotide of appropriate tertiary structure, its half‐life can be at least several hours.  相似文献   

13.
Group I (GI) self‐splicing ribozymes are attractive tools for biotechnology and synthetic biology. Several trans‐splicing and related reactions based on GI ribozymes have been developed for the purpose of recombining their target mRNA sequences. By combining trans‐splicing systems with rational modular engineering of GI ribozymes it was possible to achieve more complex editing of target RNA sequences. In this study we have developed a cooperative trans‐splicing system through rational modular engineering with use of dimeric GI ribozymes derived from the Tetrahymena group I intron ribozyme. The resulting pairs of ribozymes exhibited catalytic activity depending on their selective dimerization. Rational modular redesign as performed in this study would facilitate the development of sophisticated regulation of double or multiple trans‐splicing reactions in a cooperative manner.  相似文献   

14.
15.
Non‐natural RNA modifications have been widely used to study the function and structure of RNA. Expanding the study of RNA further requires versatile and efficient tools for site‐specific RNA modification. We recently established a new strategy for the site‐specific modification of RNA based on a functionality‐transfer reaction between an oligodeoxynucleotide (ODN) probe and an RNA substrate. 2′‐Deoxy‐6‐thioguanosine was used to anchor the transfer group, and the 4‐amino group of cytosine or the 2‐amino group of guanine was specifically modified. In this study, 2′‐deoxy‐4‐thiothymidine was adopted as a new platform to target the 6‐amino group of adenosine. The (E)‐pyridinyl vinyl keto transfer group was attached to the 4‐thioT in the ODN probe, and it was efficiently and specifically transferred to the 6‐amino group of the opposing adenosine in RNA in the presence of CuCl2. This method expands the available RNA target sites for specific modification.  相似文献   

16.
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.  相似文献   

17.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate gene expression in a sequence-specific manner. Genes with partial complementarity to siRNA/miRNA sequences in their 3′-untranslated regions (UTRs) are suppressed by a mechanism referred to as the siRNA off-target effect or miRNA-mediated RNA silencing. However, the determinants of such RNA silencing efficiency are poorly understood. Previously, I and co-workers reported that the efficiency of RNA silencing is strongly correlated with the thermodynamic stability of base pairing in the duplex formed within an siRNA/miRNA and between the seed region and its target mRNA. In this review, I first summarize our previous studies that identified the thermodynamic parameter to estimate the silencing efficiency using the calculated base pairing stability: siRNAs downregulate the expression of off-target genes depending on the stability of binding between the siRNA seed region (nucleotides 2–8) and off-target mRNAs, and miRNAs downregulate target mRNA expression depending on the stability of the duplex formed between the 5′ terminus of the miRNA and its target mRNA. I further discuss the possibility that such thermodynamic features of silencing efficiency may have arisen during evolution with increasing body temperature in various organisms.  相似文献   

18.
19.
Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20–23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3′ UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号