共查询到20条相似文献,搜索用时 0 毫秒
1.
真空搅拌脱泡是高粘度液体的一种有效脱泡方式。对于高粘度液体中的气泡,单靠自身的浮力上升,其速度是极其缓慢的,搅拌槽内生成的气泡主要依靠搅拌被带到近液面而逸出。建立了搅拌流场中的气泡运动方程,获得了气泡在流场中的相对运动速度。计算了气泡从液面逸出的总时间。真空搅拌脱泡过程主要发生在液面,论文分析了搅拌槽内真空度大小、主流体循环到液面的次数和主流体在液面停留时间对脱泡的影响。为保证气泡在近液面有足够的停留时间挣脱液面张力,必须要有一个合理搅拌转速。 相似文献
2.
离子液体在萃取分离中的应用进展 总被引:1,自引:0,他引:1
作为环境友好型功能材料——离子液体以其独特的物理化学性质已引起人们的广泛关注。离子液体在萃取分离有机物、无机金属离子领域的应用越来越多。概述了离子液体在萃取分离中的应用。总结了离子液体的萃取机理,介绍了离子液体的结构如阴、阳离子的类型对萃取效率的影响规律,讨论了静电作用、疏水作用、氢键等作用力在萃取分离过程中所扮演的角色。最后展望了离子液体在萃取分离领域的发展方向。 相似文献
3.
4.
以硝酸镉和硫代乙酰胺为原料,在不同的离子液体水溶液中采用超声法合成了不同形貌的硫化镉。采用XRD、SEM、BET、紫外-可见吸收光谱等手段对样品的结构和光学性能进行了考察,以罗丹明B为目标降解物考察了不同形貌硫化镉的光催化性能。结果表明,在不同的离子液体水溶液中可分别得到粒状、棒状和粒棒混合体。对比了纳米粒子、纳米棒和粒棒混合体对罗丹明B的降解率,结果表明,CdS纳米粒子具有更高的光催化效率,其粒状硫化镉比表面积为79.5m2/g,远大于其它形状的硫化镉。在紫外光和可见光的照射下,反应120min罗丹明B的降解率分别为97%和30%。离子液体的特殊结构是粒状硫化镉具有较高光催化活性的原因。 相似文献
5.
Juan A. Lazzús 《International Journal of Thermophysics》2009,30(3):883-909
The liquid density of imidazolium-based ionic liquids has been estimated using a combined method that includes an artificial
neural network and a simple group contribution method. A total of 1736 data points of density at several temperatures and
pressures, corresponding to 131 ionic liquids, have been used to train the neural network developed with particle swarm optimization.
To discriminate among the different substances, the molar mass and the structure of the molecule were given as input variables.
Then, new values of density as a function of temperature and pressure for 33 other ionic liquids (426 data points) have been
predicted and the results compared to experimental data from the literature. The results show that the chosen artificial neural
network with particle swarm optimization and the group contribution method represent an excellent alternative for the estimation
of the liquid density of imidazolium-based ionic liquids with acceptable accuracy (AARD=0.44; R
2 = 0.9934), for a wide range of temperatures and pressures (258 K to 393K and 99kPa to 206,940kPa). 相似文献
6.
以聚甲基丙烯酸甲酯嵌段聚乙烯基咪唑为臂,低聚倍半硅氧烷(POSS)为核的星型嵌段共聚物POSS-(PMMA-bPVIm)8为基膜材料,通过季铵化反应和离子交换过程对其进行改性,制备2种咪唑聚离子液体嵌段不同的阴离子交换膜,分别记作PMV-1、PMV-2,研究其吸水率、溶胀度、离子交换容量、力学性能、电导率及耐碱性。结果表明,膜在90℃时仍保持适当的吸水强度,2种膜的吸水率分别为18.09%和25.81%,厚度方向溶胀度分别为25.31%,35.45%;30℃时PMV-1、PMV-2的离子交换容量分别为2.38 meq/g,3.12 meq/g,力学性能良好;2种膜室温下均已具有良好的离子传输性能,90℃时电导率分别达44.02 m S/cm和255.0 m S/cm;耐碱性测试表明,含聚离子液体嵌段较短的膜PMV-1稳定性较好,60℃强碱溶液中浸泡120 h后电导率下降不超过30%。 相似文献
7.
Tim‐Patrick Fellinger Arne Thomas Jiayin Yuan Markus Antonietti 《Advanced materials (Deerfield Beach, Fla.)》2013,25(41):5838-5855
This review surveys recent work on the use of ionic liquids (ILs) and polymerized ionic liquids (PILs) as precursors to synthesize functional carbon materials. As solvents or educts with negligible vapour pressure, these systems enable simple processing, composition, and structural control of the resulting carbons under rather simple and green synthesis conditions. Recent applications of the resulting nanocarbons across a multitude of fields, such as fuel cells, energy storage in batteries and supercapacitors, catalysis, separation, and sorption materials are highlighted. 相似文献
8.
合成了一种离子液体1-烯丙基-3-甲基咪唑亚磷酸甲酯盐([Amim][(MeO)PHO_2]),这种离子液体能很好地溶解纤维素,并加入与其阴离子结构类似的无机盐亚磷酸氢二钠(Na_2PHO_3)组成复合溶解体系。文中研究了离子液体和复合体系对纤维素结构与性能的影响,通过对原生和再生纤维素展开红外光谱、热重分析、X射线衍射及聚合度的测试表征,结果显示再生纤维素没有发生衍生化,但热稳定性和结晶度及聚合度均比原生纤维素低,且随着复合溶解体系中Na_2PHO_3含量的增大,从中再生出来的纤维素的聚合度越高、热降解温度越高、结晶度越低。这种结果可能是由于无机盐的加入降低了离子液体对纤维素的酸降解而导致的。 相似文献
9.
石油中的含硫化合物不仅影响油品质量,其燃烧生成的硫氧化物(SOx)还会对生态环境和人类健康构成极大威胁.此外,燃油中的硫化物燃烧使得燃油尾气处理设备中催化剂中毒,从而排放一些其他有害的汽车尾气,如氮氧化物(NOx)、碳氢化合物和一氧化碳(CO)等.为了降低燃油中的硫含量,世界各国政府都颁布了严格的标准,如美国环保署在2006年将柴油中的硫含量降低到15 mg/kg;2007年欧盟和日本将柴油中的硫含量上限设定为10 mg/kg.自2017年起,我国政府发布了国V标准,将柴油中的硫含量限制在10 mg/kg以下.随着各项政策的出台,如何通过高效深度脱硫技术降低石油中的硫含量已成为石油化工领域的研究热点.同时,超深脱硫在解决工业废物再利用中也发挥着重要作用.目前常用的深度脱硫的方法主要有加氢脱硫(HDS)和非加氢脱硫(NHDS).由于传统的HDS方法存在去除噻吩类物质困难、成本高、条件苛刻、耗时耗能等缺点,NHDS以其低能耗、环保等优点逐渐受到人们的青睐.NHDS技术包括氧化脱硫、吸附脱硫、萃取脱硫和生物脱硫等.其中,氧化脱硫可以通过氧化剂将有机硫化物转化为砜或亚砜,提高有机硫化物在极性溶剂中的溶解度,通过萃取和蒸馏等方法将有机硫化物从石油中分离出来,达到深度脱硫的目的.与机械搅拌、生物或光催化氧化脱硫等传统脱硫方法相比,超声辅助氧化脱硫法是反应时间最短、效率最高的方法之一.近年来,离子液体因良好的热稳定性和化学稳定性而受到越来越多的关注,并被广泛应用于催化氧化脱硫.在杂多酸中引入离子液体可以形成具有氧化活性中心的杂多酸离子液体,有望表现出优异的催化活性.Xun等采用溶胶-凝胶法制备了杂多酸离子液体催化剂(SiW12O40-IL),该催化剂在脱硫方面具有优异的催化活性,当温度为60℃,n(O)/n(S)为4时,其脱硫率达到99.9%.然而,作为均相催化剂,杂多酸离子液体也存在回收率低、可重复利用性差等缺点,因此选择合适的固载化方法,实现杂多酸离子液体催化剂的异相化十分关键.常用的载体有SiO2、Al2O3、Fe3O4等,其中磁性复合材料可以实现催化剂和油样在磁场作用下的快速分离,已成为目前最为流行的载体之一.将磁性复合材料通过改性结合到催化剂上,有望得到具有较高的脱硫催化活性和优异分离效果的催化剂.为此,本研究设计并成功合成了一种具有"枣糕状"结构的、杂多酸离子液体[BMIM]3 PW12O40负载的三乙烯四胺(TETA)功能化的Fe3O4复合材料([BMIM]3 PW12O40/Fe3O4@TETA).以正辛烷为模拟油样,二苯并噻吩为硫源,过氧化氢为氧化剂,[BMIM]3PW12O40/Fe3O4@TETA为催化剂,通过超声协助考察了催化剂的催化氧化脱硫.采用响应面法(RSM)研究了超声时间、H2O2用量、反应温度对催化剂脱硫的影响;并考察了催化剂的稳定性和再生性能.对[BMIM]3PW12O40/Fe3O4@TETA的脱硫机理进行了初步探讨,结果表明,采用0.025 g[BMIM]3PW12O40/Fe3O4@TETA对50 mL浓度为500 mg/g的二苯并噻吩的模拟油样进行脱硫实验时,最佳脱硫条件为:反应温度325 K,超声时间15 min,n(O):n(S)=8:1,脱硫率可达96.5%.该催化剂重复使用五次后,脱硫率仍保持在93.7%,表明[BMIM]3PW12O40/Fe3O4@TETA具有良好的催化脱硫性能,可以重复使用.初步的脱硫机理研究表明,[BMIM]3PW12O40/Fe3O4@TETA的催化活性中心可能为其含有的杂多酸阴离子;Fe3O4@TETA起到载体的作用,而离子液体起到协同增强作用. 相似文献
10.
Systematic analysis about the exploitation of imidazolium based ionic liquids(ILs),[BMIM]BF4[IL1],[EMIM]BF4 [IL2]and[BMIM]PF6[IL3]as the morphological template on the basic sol-gel method adopted synthesis of nanostructured zinc oxide(ZnO) is presented.X-ray diffraction(XRD),particle size analysis(PSA) and scanning electron microscopy(SEM) have been employed for the characterization of structure and morphology of the synthesized ZnO particles.Well-defined capsule like shaped morphology with lower nanosize is observed for the ZnO nanoparticles with IL1 than those with IL2 and IL3.This confirms that IL1 served as an effective templating material due to their unique properties.Especially the effective aggregation of ZnO particles with a self-organized frame of IL1 was the essential factor to produce the lower nanosized ZnO with capsule shaped structure.The synthesized ZnO samples with IL2 and IL3 fabricated the flake like shaped and rod like shaped morphologies in the range of nanoscale.The formed ZnO nanoparticles with IL2 exhibit higher nanosize than the ZnO nanoparticles produced by IL1,owing to shorter length of alkyl group in its cation which restricts steric effect and permits the nanoparticles to grow longer.Even though IL3 produced the discrete ZnO nanorods,the hydrophobic nature of IL3 created the higher nanosize than the ZnO nanoparticles formed by other two ionic liquids.Antibacterial properties of the synthesized ZnO nanostructures were investigated against Staphylococcus aureus(gram positive) and Escherichia coli(gram negative) bacteria by Agar diffusion test method.Microbial experiments indicate that the synthesized ZnO samples show a wide spectrum of antimicrobial activities and performed better against S.aureus than E.coli with the same concentration of ZnO. 相似文献
11.
B. Tohidi A. C. Todd A. Danesh R. W. Burgass F. Gozalpour 《International Journal of Thermophysics》2001,22(6):1661-1668
Dynamic viscosity () and density () data are reported for methane+cis-decahydronaphthaline (decalin) binary mixtures of 25, 50, and 75 mass% (74, 90, and 96 mol%) methane at three temperatures (323, 373, and 423 K) from saturation pressure to 140 MPa. A capillary tube viscometer was used for measuring the dynamic viscosity, with the density being calculated from measurements of sample mass and volume. The overall uncertainties in the reported data are 1.0 and 0.5% for the viscosity and density measurements, respectively. 相似文献
12.
The viscosity of gaseous HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) was measured with an oscillating-disk viscometer of the Maxwell type at temperatures from 323.15 to 423.15 K and at pressures up to the saturated vapor pressure at each temperature in subcritical conditions or up to 2 MPa under supercritical conditions. 相似文献
13.
The viscosities of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) were measured by using a rolling-ball viscometer. The experimental temperatures were from 293.15 to 353.15 K, and the pressures were from 0.1 to 20.0 MPa.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China. 相似文献
14.
A new apparatus for measuring the viscosity and density of fluids is presented. The main element of the instrument is an electronically controlled magnetic suspension coupling. For the density measurement (buoyancy principle according to the single-sinker method), this coupling is used for the contactless transfer of the forces acting on a sinker in the measuring cell to an analytical balance. The coupling also serves as a frictionless bearing for a slender rotating cylindrical body which is slowed down due to the viscous drag of the fluid surrounding the cylinder. The viscosity of the fluid can be directly determined from the decay rate of the rotational frequency. The new combined viscometer-densimeter covers a viscosity range of 5 to 150 Pa·s and a density range from 20 to 2000 kg·m–3 at temperatures from 233 to 523 K and pressures up to 30 MPa. Test measurements on the viscosities and densities of nitrogen and carbon dioxide at 253, 293, and 523 K at pressures up to 30 MPa show an estimated total uncertainty of ±0.6 to ±1.0% in viscosity and of ±0.02 to ±0.05% in density. 相似文献
15.
A. R. H. Goodwin A. D. Fitt K. A. Ronaldson W. A. Wakeham 《International Journal of Thermophysics》2006,27(6):1650-1676
In the petroleum industry, measurements of the density and viscosity of petroleum reservoir fluids are required to determine the value of the produced fluid and the production strategy. Measurements of the density and viscosity of petroleum fluids require a transducer that can operate at reservoir conditions, and results with an uncertainty of about ±1% in density and ±10% in viscosity are needed to guide value and exploitation calculations with sufficient rigor. Necessarily, these specifications place robustness as a superior priority to accuracy for the design. A vibrating plate, with dimensions of the order of 1 mm and a mass of about 0.12 mg, clamped along one edge, has been fabricated, with the methods of Microelectromechanical (MEMS) technology, to provide measurements of both density and viscosity of fluids in which it is immersed. The resonance frequency (at pressure p = 0 is about 12 kHz) and quality factor (at p = 0 is about 2800) of the first order bending (flexural) mode of the plate are combined with semi-empirical working equations, coefficients obtained by calibration, and the mechanical properties of the plate to provide the density and viscosity of the fluid into which it is immersed. When the device was surrounded by argon at temperatures between 348 and 423 K and at pressures between 20 and 68 MPa, the density and viscosity were determined with an expanded (k = 2) uncertainty, including the calibration, of about ±0.35% and ±3%, respectively. These results, when compared with accepted correlations for argon reported in the literature, were found to lie within ±0.8% for density and less than ±5% for viscosity of literature values, which are within a reasonable multiple of the relative combined expanded (k = 2) uncertainty. 相似文献
16.
J. H. Dymond M. A. Awan N. F. Glen J. D. Isdale 《International Journal of Thermophysics》1991,12(3):433-447
A two-coil self-centering falling-body viscometer has been used to measure viscosity coefficients for acetonitrile and three binary mixtures of toluene+ acetonitrile at 25, 50, 75, and 100°C and pressures up to 500 MPa. The results for acetonitrile can be interpreted by an approach based on hard-sphere theory, with a roughness factor of 1.46. The binary-mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure and temperature dependent but composition independent. 相似文献
17.
The period and damping of the free motion of a body oscillating in a fluid depend on the fluid's viscosity and density. Commonly, a working equation which expresses the damping as a function of the viscosity and density is solved for the viscosity, the damping being measured and the density being treated as an independently supplied parameter. Another working equation exists for the period, and, in general, the period depends on a combination of the viscosity and the density which is linearly independent of the combination that appears in the damping equation. It is, therefore, in principle, possible to determine both the viscosity and the density by a simultaneous solution of the two coupled working equations, since the period also is measured. In this paper, the working equations that describe the oscillating-disk viscometer are reviewed and their simultaneous solution is considered. The effect of fixed plates symmetrically located above and below the oscillating disk is of specific interest. The paper's main result is that fixed plates can dramatically increase the independence of the damping and period working equations, so that it becomes indeed feasible to determine the viscosity and the density of a fluid simultaneously from the damping and period of oscillating motion. A price is paid, however, because the instrument's working equations when plates are present have multiple solutions. Under special conditions, these multiple solutions can coalesce, and then one can only deduce the viscosity from the damping equation if the density is known a priori. 相似文献
18.
Viscosities of seven binary systems of n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-hexane, n-octane, and isoctane (2,2,4-trimethylpentane) with tributylamine have been measured at 303.15 and 313.15 K with an Ubbelohde suspended-level viscometer. Based on Eyring's theory, values of excess Gibbs energy of activation G
*E
of viscous flow have been calculated. Deviations of viscosities from linear dependence on the mole fraction and values of G
*E
are attributed to the H-bonding and to the size of alkylamine and alkane molecules. The free volume theory of Prigogine-Flory-Patterson in combination with work by Bloomfield-Dewan has been used to estimate the excess viscosity ln and the terms corresponding to enthalpy, entropy, and free volume contributions for the present binary mixtures. 相似文献
19.
New viscosity measurements for the gaseous and supercritical state of the halogenated hydrocarbons R12, R113, and R114 and binary mixtures of R12 + R114 of different compositions are presented. The measurements were carried out at superheated and supercritical temperatures from 30 to 200° C and in the pressure range from 1 to 80 bar. Viscosity was measured with an oscillating-disk viscometer and the data obtained are relative to the viscosity of nitrogen. The estimated accuracy of the measured results is ±0.6%. The results obtained show that, at subcritical temperatures, the pressure effect on viscosity is negative. This anomalous behaviour is investigated in detail in this work. At atmospheric pressure the viscosity of gas mixtures is almost a linear function of their composition. At high pressure, the residual viscosities -
0 of both the pure components and the mixtures were used to follow a single relationship versus the residual reduced density
r0.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A. 相似文献
20.
D. R. Caudwell J. P. M. Trusler V. Vesovic W. A. Wakeham 《International Journal of Thermophysics》2004,25(5):1339-1352
A vibrating-wire instrument for simultaneous measurement of the density and viscosity of liquids under conditions of high pressure is described. The instrument is capable of operation at temperatures between 298.15 and 473.15 K at pressures up to 200 MPa. Calibration was performed by means of measurements in vacuum, air, and toluene at 298.15 K. For n-dodecane measurements were made along eight isotherms between 298.15 and 473.15 K at pressures up to 200 MPa while for n-octadecane measurements were measured along seven isotherms between 323.15 and 473.15 K at pressures up to 90 MPa. The estimated uncertainty of the results is 2% in viscosity and 0.2% in density. Comparisons with literature data are presented. 相似文献