首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
A homogenous fluorescence dual-probe assay containing 2'-N-(pyren-1-ylmethyl)-2'-amino-LNA (locked nucleic acid) building blocks has been developed for effective mismatch-sensitive nucleic acid detection. The pyrene units, which are connected to the rigid bicyclic furanose derivative of 2'-amino-LNA through a short linker, are positioned at the 3' and 5' ends of a dual-probe system. Whereas hybridization with complementary DNA/RNA results in very strong excimer signals, as the pyrene units are in close proximity to one another in the ternary complex, exposure to most singly mismatched DNA/RNA targets results in significantly lower excimer emission intensity. The mechanism that underlies this excellent optical discrimination of singly mismatched targets is clarified by comparison of the thermal-denaturation profiles and fluorescence properties of the dual probe and a covalently linked analogue. Optical discrimination of singly mismatched targets arises from a decrease in excimer emission intensity due to a failure to form a ternary complex (a decrease in thermal stability) and/or local mismatch-induced changes in the helix geometry, depending on the position of the mismatched base pair. The devised dual-probe assay constitutes a simple and sensitive system for the detection of single-nucleotide polymorphism and highlights that conformational restriction combined with the use of short probes conveys favorable properties to dual-probe constructs.  相似文献   

2.
Fluorescence in situ hybridization (FISH) is a well-established technique that is used for a variety of purposes, ranging from pathogen detection in clinical diagnostics to the determination of chromosomal stability in stem cell research. The key step of FISH involves the detection of a nucleic acid region and as such, DNA molecules have typically been used to probe for the sequences of interest. However, since the turn of the century, an increasing number of laboratories have started to move on to the more robust DNA mimics methods, most notably peptide and locked nucleic acids (PNA and LNA). In this review, we will cover the state-of-the-art of the different DNA mimics in regard to their application as efficient markers for the presence of individual microbial cells, and consider their potential advantages and pitfalls. Available PNA probes are then reassessed in terms of sensitivity and specificity using rRNA databases. In addition, we also attempt to predict the applicability of DNA mimics in well-known techniques attempting to detect in situ low number of copies of specific nucleic acid sequences such as catalyzed reporter deposition (CARD) and recognition of individual genes (RING) FISH.  相似文献   

3.
Hybridization‐based methods for the detection of nucleic acid sequences are important in research and medicine. Short probes provide sequence specificity, but do not always provide a durable signal. Sequence‐specific covalent crosslink formation can anchor probes to target DNA and might also provide an additional layer of target selectivity. Here, we developed a new crosslinking reaction for the covalent capture of specific nucleic acid sequences. This process involved reaction of an abasic (Ap) site in a probe strand with an adenine residue in the target strand and was used for the detection of a disease‐relevant T→A mutation at position 1799 of the human BRAF kinase gene sequence. Ap‐containing probes were easily prepared and displayed excellent specificity for the mutant sequence under isothermal assay conditions. It was further shown that nanopore technology provides a high contrast—in essence, digital—signal that enables sensitive, single‐molecule sensing of the cross‐linked duplexes.  相似文献   

4.
Real-time PCR is the state-of-the-art technique to quantify nucleic acids for mutation detection, genotyping and chimerism analysis. Since its development in the 1990s, many different assay formats have been developed and the number of real-time PCR machines of different design is continuously increasing. This review provides a survey of the instruments and assay formats available and discusses the pros and cons of each. The principles of quantitative real-time PCR and melting curve analysis are explained. The quantification algorithms with internal and external standardization are derived mathematically, and potential pitfalls for the data analysis are discussed. Finally, examples of applications of this extremely versatile technique are given that demonstrate the enormous impact of real-time PCR on life sciences and molecular medicine.  相似文献   

5.
Genomic DNA methylation is involved in many diseases and is expected to be a specific biomarker for even the pre-symptomatic diagnosis of many diseases. Thus, a rapid and inexpensive detection method is required for disease diagnosis. We have previously reported that cytosine methylation in G-quadruplex (G4)-forming oligonucleotides develops different G4 topologies. In this study, we developed a method for detecting CpG methylation in G4-forming oligonucleotides based on the structural differences between methylated and unmethylated G4 DNAs. The differences in G4 topologies due to CpG methylation can be discriminated by G4 ligands. We performed a binding assay between methylated or unmethylated G4 DNAs and G4 ligands. The binding abilities of fluorescent G4 ligands to BCL-2, HRAS1, HRAS2, VEGF G4-forming sequences were examined by fluorescence-based microtiter plate assay. The differences in fluorescence intensities between methylated and unmethylated G4 DNAs were statistically significant. In addition to fluorescence detection, the binding of G4 ligand to DNA was detected by chemiluminescence. A significant difference was also detected in chemiluminescence intensity between methylated and unmethylated DNA. This is the first study on the detection of CpG methylation in G4 structures, focusing on structural changes using G4 ligands.  相似文献   

6.
A new label-free in situ monitoring system for the hybridization chain reaction (HCR) based on DNA minor-groove-binding fluorophores [Hoechst 33258 (Hoe) or quinone cyanine-dithiazole (QCy-DT)] has been developed. Use of two unmodified hairpin oligodeoxyribonucleotides containing incomplete double-stranded AATT sequences enabled target-dependent formation of probe binding sites—that is, AATT double strand—in the HCR product, together with fluorescence enhancement of minor-groove-binding fluorophores in situ. This system allows target DNA to be detected through the fluorescence enhancement of Hoe and QCy-DT in real time and in situ. Further development of a label-free, isothermal detection system might provide a cost-effective and user-friendly method for nucleic acid detection.  相似文献   

7.
Hepatitis B remains a major global public health challenge, with particularly high prevalence in medically disadvantaged western Pacific and African regions. Although clinically available technologies for the qPCR detection of HBV are well established, research on point-of-care testing has not progressed substantially. The development of a rapid, accurate point-of-care test is essential for the prevention and control of hepatitis B in medically disadvantaged rural areas. The development of the CRISPR/Cas system in nucleic acid detection has allowed for pathogen point-of-care detection. Here, we developed a rapid and accurate point-of-care assay for HBV based on LAMP-Cas12a. It innovatively solves the problem of point-of-care testing in 10 min, particularly the problem of sample nucleic acid extraction. Based on LAMP-Cas12a, visualization of the assay results is presented by both a fluorescent readout and by lateral flow test strips. The lateral flow test strip technology can achieve results visible to the naked eye, while fluorescence readout can achieve real-time high-sensitivity detection. The fluorescent readout-based Cas12a assay can achieve HBV detection with a limit of detection of 1 copy/μL within 13 min, while the lateral flow test strip technique only takes 20 min. In the evaluation of 73 clinical samples, the sensitivity and specificity of both the fluorescence readout and lateral flow test strip method were 100%, and the results of the assay were fully comparable to qPCR. The LAMP-Cas12a-based HBV assay relies on minimal equipment to provide rapid, accurate test results and low costs, providing significant practical value for point-of-care HBV detection.  相似文献   

8.
The clustered regularly interspaced short palindromic repeats (CRISPR) technology has been widely applied for nucleic acid detection because of its high specificity. By using the highly specific and irreversible bond between HaloTag and its alkane chlorine ligand, we modified dCas9 (deactivated CRISPR/Cas9) with biotin as a biosensor to detect nucleic acids. The CRISPR biosensor was facilely prepared to adequately maintain its DNA-recognition capability. Furthermore, by coupling biolayer interferometry (BLI) with the CRISPR biosensor, a real-time, sensitive, and rapid digital system called CRISPR-BLI was established for the detection of double-stranded DNA. The CRISPR biosensor immobilised on the biolayer could recruit the target DNA onto the biosensor surface and change its optical thickness, resulting in a shift in the interference pattern and responding signal of the BLI. The CRISPR-BLI system was further applied to detect the ALP gene of Escherichia coli DH5α combined with a polymerase chain reaction, which demonstrated a linear range from 20 to 20 000 pg and a low detection limit (1.34 pg). The CRISPR-BLI system is a promising approach for rapid and sensitive detection of target DNA analytes.  相似文献   

9.
DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence-based throughput screening by using a short DNA duplex immobilized on 96-well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC(50) values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure-activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5-azacytidine.  相似文献   

10.
CRISPR/Cas is a prokaryotic self-defense system, widely known for its use as a gene-editing tool. Because of their high specificity to detect DNA and RNA sequences, different CRISPR systems have been adapted for nucleic acid detection. CRISPR detection technologies differ highly among them, since they are based on four of the six major subtypes of CRISPR systems. In just 5 years, the CRISPR diagnostic field has rapidly expanded, growing from a set of specific molecular biology discoveries to multiple FDA-authorized COVID-19 tests and the establishment of several companies. CRISPR-based detection methods are coupled with pre-existing preamplification and readout technologies, achieving sensitivity and reproducibility comparable to the current gold standard nucleic acid detection methods. Moreover, they are very versatile, can be easily implemented to detect emerging pathogens and new clinically relevant mutations, and offer multiplexing capability. The advantages of the CRISPR-based diagnostic approaches are a short sample-to-answer time and no requirement of laboratory settings; they are also much more affordable than current nucleic acid detection procedures. In this review, we summarize the applications and development trends of the CRISPR/Cas13 system in the identification of particular pathogens and mutations and discuss the challenges and future prospects of CRISPR-based diagnostic platforms in biomedicine.  相似文献   

11.
Protein microarrays are powerful tools that are widely used in systems biology research. For infectious diseases, proteome microarrays assembled from proteins of pathogens will play an increasingly important role in discovery of diagnostic markers, vaccines, and therapeutics. Distinct formats of protein microarrays have been developed for different applications, including abundance-based and function-based methods. Depending on the application, design issues should be considered, such as the need for multiplexing and label or label free detection methods. New developments, challenges, and future demands in infectious disease research will impact the application of protein microarrays for discovery and validation of biomarkers.  相似文献   

12.
The engineering of easy-to-use biosensors with ultra-low detection sensitivity remains a major challenge. Herein, we report a simple approach for creating such sensors through the use of an RNA-cleaving DNAzyme (RcD) and a strategy designed to concentrate its cleavage product significantly. The assay uses micron-sized beads loaded with a target-responsive RcD and a paper strip containing a microzone covered with a DNA oligonucleotide capable of capturing the cleavage product of the RcD through Watson–Crick hybridization. Placing the beads and the paper strip in a target-containing test sample allows the bead-bound RcD molecules to undergo target-induced RNA cleavage, releasing a DNA fragment that is captured by the paper strip. This strategy, though simple, is very effective in achieving high levels of detection sensitivity, being able to enrich the concentration of the cleavage product by three orders of magnitude. It is also compatible with both fluorescence-based and colorimetric reporting mechanisms. This work provides a simple platform for developing ultrasensitive biosensors that take advantage of the widely available RcDs as molecular recognition elements.  相似文献   

13.
抗生素作为动物治疗剂和生长促进剂广泛应用于农业、畜牧业、水产品养殖业,导致动植物食品中抗生素残留量超标,严重威胁人体健康。因此,检测食品中抗生素残留具有重要意义。而现有的抗生素残留检测方法如微生物法、免疫学分析、液相色谱-质谱法、毛细管电泳等,通常具有耗时长、操作复杂、成本高等缺点。生物传感器作为一种高新技术,具有快速简单、灵敏度高、选择性好、成本低等特点,在抗生素残留检测领域具有较大优势。核酸探针作为一种新型生物分析工具广泛应用于生物传感器的开发中,将其引入抗生素残留的生物传感检测为实现抗生素残留的高效检测开辟了新途径。该文从电化学生物传感器、荧光生物传感器、比色生物传感器以及其他常见生物传感器方面综述了核酸探针在抗生素残留生物传感检测中的应用研究进展,并展望了该领域未来的发展前景。  相似文献   

14.
颜玉婷  王乾  周芳芳  黄悦 《精细化工》2023,40(4):783-790
抗生素作为动物治疗剂和生长促进剂广泛应用于农业、畜牧业、水产品养殖业,导致动植物食品中抗生素残留量超标,严重威胁人体健康。因此,检测食品中抗生素残留具有重要意义。而现有的抗生素残留检测方法如微生物法、免疫学分析、液相色谱-质谱法、毛细管电泳等,通常具有耗时长、操作复杂、成本高等缺点。生物传感器作为一种高新技术,具有快速简单、灵敏度高、选择性好、成本低等特点,在抗生素残留检测领域具有较大优势。核酸探针作为一种新型生物分析工具广泛应用于生物传感器的开发中,将其引入抗生素残留的生物传感检测为实现抗生素残留的高效检测开辟了新途径。该文从电化学生物传感器、荧光生物传感器、比色生物传感器以及其他常见生物传感器方面综述了核酸探针在抗生素残留生物传感检测中的应用研究进展,并展望了该领域未来的发展前景。  相似文献   

15.
目的建立皮内注射用卡介苗(Bacillus Calmette Guerin vaccine,BCG)特异性鉴别试验的多重PCR法,并进行验证。方法根据GenBank登录的Pasteur 1173P2株序列(AM408590. 1)设计并合成引物,以制备的BCG特异性鉴别试验国家参考品(简称BCG鉴别参考品)DNA为模板,多重PCR法扩增其特异性缺失区RD1,产物经3%琼脂糖凝胶电泳鉴定,验证方法的重复性、中间精密度、特异性、耐用性及灵敏度;采用该方法检测8批皮内注射用BCG供试品。结果 BCG鉴别参考品在重复检测6次、2名检测人员分别重复检测3 d、不同PCR退火温度及不同DNA聚合酶加量时均扩增出约200 bp的核酸片段;最低可检10 pg/mL的目的基因,仅对结核分枝杆菌H37Rv及皮内注射用BCG样品DNA扩增出特异性条带。经该方法检测,8批供试品PCR产物电泳均可见单一的目的条带,无RD1序列存在,大小与BCG鉴别参考品一致。结论多重PCR法的重复性、中间精密度、特异性、耐用性及灵敏度良好,可应用于皮内注射用BCG特异性鉴别试验。  相似文献   

16.
Functional DNA hydrogels with various motifs and functional groups require perfect sequence design to avoid cross-bonding interference with themselves or other structural sequences. This work reports an A-motif functional DNA hydrogel that does not require any sequence design. A-motif DNA is a noncanonical parallel DNA duplex structure containing homopolymeric deoxyadenosines (poly-dA) strands that undergo conformation changes from single strands at neutral pH to a parallel duplex DNA helix at acidic pH. Despite this and other advantages over other DNA motifs like no cross-bonding interference with other structural sequences, the A-motif has not been explored much. We successfully synthesized a DNA hydrogel by using an A-motif as a reversible handle to polymerize a DNA three-way junction. The A-motif hydrogel was initially characterized by electrophoretic mobility shift assay, and dynamic light scattering, which showed the formation of higher-order structures. Further, we used imaging techniques like atomic force microscopy and scanning electron microscope to validating its hydrogel like highly branched morphology. pH-induced conformation transformation from monomers to gel is quick and reversible, and was analysed for multiple acid-base cycles. The sol-to-gel transitions and gelation properties were further examined in rheological studies. The use of the A-motif hydrogel in the visual detection of pathogenic target nucleic acid sequence was demonstrated for the first time in a capillary assay. Moreover, pH-induced hydrogel formation was observed in situ as a layer over the mammalian cells. The proposed A-motif DNA scaffold has enormous potential in designing stimuli-responsive nanostructures that can be used for many biological applications.  相似文献   

17.
核酸固相分离方法及其在病原PCR诊断中的应用综述   总被引:1,自引:0,他引:1  
病原PCR(Polymerase Chain Reaction)诊断具有快速、灵敏、高修改灵活性等优势,在传染病控制、农业病害防治和食品安全等领域发挥着重要作用.核酸分离作为分子诊断技术的关键步骤,影响着PCR诊断的整体效率、检测灵敏度和准确性,是PCR诊断局限于实验室使用的关键制约因素之一.核酸固相分离可以避免传统液...  相似文献   

18.
19.
Real-time protein detection in homogeneous solutions is necessary in many biotechnology and biomedical studies. The recent development of molecular aptamers, combined with fluorescence techniques, may provide an easy and efficient approach to protein elucidation. This report describes the development of a fluorescence-based assay with synthetic DNA aptamers that can detect and distinguish molecular variants of proteins in biological samples in a high-throughput process. We used an aptamer with high affinity for the B chain of platelet-derived growth factor (PDGF), labeled it with a fluorophore and a quencher at the two termini, and measured fluorescence quenching by PDGF. The specific quenching can be used to detect PDGF at picomolar concentrations even in the presence of serum and other cell-derived proteins in cell culture media. This is the first successful application of a synthetic aptamer for the detection of tumor-related proteins directly from the tumor cells. We also show that three highly related molecular variants of PDGF (AA, AB, and BB dimers) can be distinguished from one another in this single-step assay, which can be readily adapted to a microtiter plate assay for high-throughput analysis. The use of fluorescence quenching as a measure of binding between the DNA probe and the target protein eliminates potential false signals that may arise in traditional fluorescence enhancement assays as a result of degradation of the DNA aptamer by contaminating nucleases in biological specimens. This assay is applicable to proteins that are not naturally DNA binding. The excellent specificity, ultrahigh sensitivity, and simplicity of this one-step assay addresses a growing need for high-throughput methods that detect changes in the expression of gene products and their variants in cell cultures and biological specimens.  相似文献   

20.
DNA分子具有自我识别的特殊能力,DNA折纸术就是利用这一特性进行核酸纳米材料精准设计和组装的一种新技术。研究者可以利用与DNA脚手架链互补的订书钉链,将长链核酸折叠成与预设模型一致的纳米结构。DNA折纸术最早是2006年由Rothemund提出,一直以来,人们利用M13mp18单链线性DNA进行各种纳米图形的自组装。为了寻找更多的核酸材料进行DNA折纸研究,本文以枯草芽孢杆菌(Bacillus. subtilis 168)citZ基因序列为研究对象,采用改进的DAEDALUS软件,引入“锁钥”结构设计,利用“从下向上”的方法使DNA分子进行自组装,设计出三维体积为50.71nm×50.71nm×50.71nm的citZ基因纳米盒,只有遇到可识别的基因和匹配的“钥匙”时,才可能打开盖子,释放盒中的内容物。这种核酸纳米材料还可以通过调节DNA序列长度调节盒子的内部空间,有望成为一种新型的靶向药物运送载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号