首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Active silica from rice husk ash (RHA) and silica fume (SF) were progressively incorporated in a whiteware composition in substitution of quartz. The Influence of the addition on the thermo-mechanical properties, vitrification behavior and microstructure has been investigated. It has been found that replacement of quartz by RHA+ SF (1:1) reduced drastically both the maturing temperature (50–100 °C) and the thermal expansion (3.24–14.6%) at 600 °C with the improvement in the fired strength. Maximum improvement in the fired MOR (20.8%) was observed in a whiteware composition containing 10% (RHA+silica fume). On complete replacement of quartz (25%) by RHA+SF, the fired strength was noticed around 14.95% in whiteware body matured at lower temperature by 100 °C.The improvement in the properties is attributed to sharp changes in the microstructural features as a result of significant reduction in the content of the quartz phase and the simultaneous increase in glassy phase. The findings would be helpful to improve the properties of whiteware as well as to reduce the energy consumption during firing process.  相似文献   

2.
Rice husk ashes (RHA) have been used as pozzolanic admixtures for high performance concrete (HPC). This study reports on a chemical treatment before burning that improves the effectiveness of the RHA. The resulting ash (ChRHA) was compared to ash produced by conventional incineration (TRHA). The digestive chemical treatment before burning produced an RHA with properties comparable to silica fume. The ChRHA was highly amorphous, white in color, presented higher specific surface area and exhibited greater pozzolanic activity. The fresh and hardened properties of HPC made with different percentages of these RHAs were compared. The hardened concrete testing included the determination of the modulus of elasticity and the compressive and flexural properties. It was shown that ChRHA and TRHA were effective supplementary cementing materials, although concrete mixes required higher dosages of superplasticizer compared to the control concrete mix.  相似文献   

3.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

4.
采用酸溶法测定并比较几种典型的火山灰质掺合料的火山灰活性,探讨其火山灰反应程度对浆体强度的影响。试验结果表明,硅灰的火山灰活性最大,明显高于煤矸石和粉煤灰;煤矸石和Ⅱ级磨细粉煤灰的火山灰活性比Ⅰ级分选粉煤灰较大;酸溶法测定的煤矸石或硅灰的火山灰活性误差较大,活性偏低;掺合料火山灰的活性与其浆体强度有一定相关性。  相似文献   

5.
This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, and particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.  相似文献   

6.
Pozzolanic activity of clinoptilolite, the most common natural zeolite mineral, was studied in comparison to silica fume, fly ash and a non-zeolitic natural pozzolan. Chemical, mineralogical and physical characterizations of the materials were considered in comparative evaluations. Pozzolanic activity of the natural zeolite was evaluated with various test methods including electrical conductivity of lime-pozzolan suspensions; and free lime content, compressive strength and pore size distribution of hardened lime-pozzolan pastes. The results showed that the clinoptilolite possessed a high lime-pozzolan reactivity that was comparable to silica fume and was higher than fly ash and a non-zeolitic natural pozzolan. The high reactivity of the clinoptilolite is attributable to its specific surface area and reactive SiO2 content. Relatively poor strength contribution of clinoptilolite in spite of high pozzolanic activity can be attributable to larger pore size distribution of the hardened zeolite-lime product compared to the lime-fly ash system.  相似文献   

7.
Copper slag is a by‐product generated during smelting to extract copper metal from the ore. The copper slag obtained may exhibit pozzolanic activity and may therefore be used in the manufacture of addition‐containing cements. In this paper the effect of the incorporation of the copper slag in cement is measured. Blends of copper slag with Portland cement generally possess properties equivalent to Portland cement containing fly ash, but very different to the silica fume incorporation. Copper slag and fly ash reduce the heat of hydration more effectively than silica fume in mortars. The replacement of 30% cement by copper slag reduces the flexural and compressive strength in a similar way to fly ash; however, after 28 days, the reduction is less than the percentage of substitution. Hydrated calcium aluminate phases were analysed using scanning electron microscopy (SEM) and X‐ray diffraction (XRD) techniques. The pozzolanic activity of copper slag is similar to that of fly ash and higher than silica fume. In the presence of low water/cement ratios, certain pozzolanic materials produce a very compact cement paste that limits the space available for hydration products, a determining factor in the formation of hydrated calcium aluminates. SEM was found to be a useful analytical technique when aluminates are formed and can be clearly detected by XRD. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Influence of metakaolin on the properties of mortar and concrete: A review   总被引:1,自引:0,他引:1  
Supplementary cementing materials (SCM) have become an integral part of high strength and high performance concrete mix design. These may be naturally occurring materials, industrial wastes, or byproducts or the ones requiring less energy to manufacture. Some of the commonly used supplementary cementing materials are fly ash, silica fume (SF), granulated blast furnace slag (GGBS), rice husk ash (RHA) and metakaolin (MK), etc. Metakaolin is obtained by the calcination of kaolinite. It is being used very commonly as pozzolanic material in mortar and concrete, and has exhibited considerable influence in enhancing the mechanical and durability properties of mortar and concrete. This paper presents an overview of the work carried out on the use of MK as partial replacement of cement in mortar and concrete. Properties reported in this paper are the fresh mortar/concrete properties, mechanical and durability properties.  相似文献   

9.
The ash of the retort residue of the oil shale from central Jordan has been further tested to evaluate its pozzolanic activity. According to the preliminary experiments the ash had cementive properties. Thermogravimetric analyses were performed on ash, cement, ash blended cement and ash-lime pastes. In the blended pastes, addition of ash seemed to decrease the amount of lime generated. In the ash-lime paste the lime consumption by ash with time followed a similar trend to the reactions of trass and silica fume with lime. The ash-lime reaction was mainly a diffusion controlled process obeying the Ginstling-Brounshtein equation. The pozzolanic activity of the ash, as indicated by its lime activity and rate constant, was not as high as the other pozzolans compared, mainly due to its lower fineness. Tests on compressive strengths of cement and lime mortars blended with ash confirmed the findings, indicating that up to 20% of cement could be replaced by ash used as an admixture. Ash-lime mortars could gain moderate strengths under accelerated curing, suitable for some building units.  相似文献   

10.
For comparing the relative performance of various supplementary cementing materials (SCMs: silica fume, fly ash, slag, natural pozzolans, etc.) as regards Portland cement, the practical concept of an efficiency factor may be applied. The efficiency factor (or k value) is defined as the part of the SCM in an SCM-concrete that can be considered as equivalent to Portland cement. In the present work, an alternative procedure for experimental determination of the k value is proposed, using the concept of the pozzolanic activity index. For the first time, also, the k value for equivalent strength was correlated with the active silica content of the SCM through analytical expressions. Artificial pozzolanic materials of various compositions and some natural pozzolans were studied. It was found and verified by experimental comparison that these expressions are valid only for artificial SCMs (fly ash, slag), whereas in the case of natural SCMs the k value is overestimated. Thus, knowing primarily the active silica content of the SCM, a first approximation of the k value can be obtained and, further, the strength of a concrete incorporating artificial SCM can be predicted.  相似文献   

11.
Various factors determine the applicability of rice husk ash (RHA) as a pozzolanic material. The amount and accessibility of reactive sites is thought to be a key factor. A structural study of RHA samples in relation to their reactivity has been performed; Silica in RHA formed by burning rice husk in a laboratory furnace under continuous supply of air have been characterized as a function of incineration temperature, time and cooling regime. The characterization methods included chemical analyses, conductivity measurements, microscopic analysis, X-ray diffraction (XRD) and 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR). In line with earlier observations, the analyses show that the highest amounts of amorphous silica occur in samples burnt in the range of 500 °C–700 °C. The 29Si NMR data allow direct identification of the reactive silanol sites in the RHA samples. De-convolution of the NMR spectra clearly shows that the quickly cooled RHA resulting from burning rice husk for 12 h at 500 °C has the highest amount of silanol groups. This sample also induced the largest drop in conductivity when added to a saturated calcium hydroxide solution giving an indication of its reactivity towards lime. Therefore, this RHA is the favorable sample to be used as pozzolanic cement additive.  相似文献   

12.
The kinetics of the pozzolanic reaction between lime (calcium hydroxide) and sugar cane straw ash (SCSA) with 20% and 30% of clay burned at 800 and 1000 °C is studied. A simple experimental technique was used in which the conductivity is the experimental variable. For correlating the conductivity with the concentration of calcium hydroxide (CH), a calibration curve was established. We elaborated a mathematical model that allows us to describe the process in either kinetic or kinetic-diffusive regimes. The fitting of the model by computerized methods enables us determine the parameters that characterize the process: i.e. the diffusion coefficient and reaction rate constant. The pozzolanic activity is evaluated according to the obtained values of the reaction rate constant. The results show that SCSA has a good pozzolanic activity comparable to that of the rice husk ash (RHA).  相似文献   

13.
Many solid industrial by-products such as siliceous and aluminous materials (fly ash, silica fume, slags, etc.) as well as some natural pozzolanic materials (volcanic tuffs, diatomaceous earth, etc.) may be characterized as supplementary cementing materials (SCM) as they exhibit cementitious and/or pozzolanic properties. Due to plenty of these materials and their large variations on physical and chemical composition, the development of a general design for their use in concrete is required. In this work, the concept of an efficiency factor is applied as a measure of the relative performance of SCM compared with Portland cement. Artificial materials of various compositions and some natural pozzolans were studied. Compressive strength and accelerated chloride penetration tests were performed. With regard to these characteristics, efficiency factors for these materials were calculated. A mix design strategy to fulfil any requirements for concrete strength and service lifetime was developed and it enables concrete performance to be accurately predicted.  相似文献   

14.
徐迅 《中国水泥》2007,(3):64-66
硅灰是一种良好的混凝土掺合料,纳米SiO2同样具有火山灰活性,本文运用XRD、SEM、IR和激光粒度仪等现代测试手段研究了纳米SiO2和硅灰的火山灰反应活性差异的原因。  相似文献   

15.
Rice husk ash (RHA) has long been known to possess a pozzolanic property. The abundance of rice husk as agricultural waste makes RHA the most promising candidate to be used as a supplementary cementitious material (SCM) in many rice-exporting countries. The use of RHA as an SCM helps reduce the use and thus the production of cement that involves great energy consumption and CO2 emission. To promote the use of RHA as an SCM, a method to assess its pozzolanic activity is needed for the process of optimizing the burning conditions and/or selecting RHA from uncontrolled burning of rice husk as biomass fuel.The present work aims to use impedance spectroscopy to characterize pozzolanic activity of RHAs prepared on a pilot scale. The method is based on the rate of the normalized conductivity change of the Ca(OH)2 + RHA paste, d(σ/σ0)/dt, during the first 24 h of hydration. The measurement was found to be sensitive to the unburnt carbon content in the 6–8 wt.% range and the amorphous SiO2 content (regardless of the unburnt carbon content). When used to evaluate two separate groups of RHAs, each with comparable unburnt carbon contents, the method gives very high correlation coefficients to the strength activity index at 3, 7, and 28 days. However, the correlation coefficients fall significantly when RHAs with vast difference in the unburnt carbon contents are considered together. The method thus proves to be powerful for evaluation of the pozzolanic activity of RHAs with comparable carbon contents.  相似文献   

16.
The pozzolanic activity of pulverized fuel ash (p.f.a.) has been determined by measuring the rate of dissolution of silica from p.f.a. in 0.1 M hydrofluoric acid. The rate of extraction of silica follows a logarithmic law and the rate constant is an index of the pozzolanic activity of the ash.  相似文献   

17.
This paper presents a method of improving coarse fly ash in order to replace condensed silica fume in making high-strength concrete. The coarse fly ash, having the average median diameter about 90-100 μm, yields a very low pozzolanic reaction and should not be used in concrete. In order to improve its quality, the coarse fly ash was ground until the average particle size was reduced to 3.8 μm. Then, it was used to replace Portland cement type I by weights of 0%, 15%, 25%, 35%, and 50% to produce high-strength concrete. It was found that concrete containing the ground coarse fly ash (FAG) replacement between 15% and 50% can produce high-strength concrete and 25% cement replacement gave the highest compressive strength. In addition, the concrete containing FAG of 15-35% as cement replacement exhibited equal or higher compressive strengths after 60 days than those of condensed silica fume concretes. The results, therefore, suggest that the FAG with high fineness is suitable to use to replace condensed silica fume in producing high-strength concrete.  相似文献   

18.
The influence of water-to-binder ratio (0.33 to 0.50) and additions (fly ash, slag, silica fume) on the microstructure of partially carbonated cement pastes was studied by nitrogen sorption and static and dynamic water vapour sorption. The selected technique affects macropore condensation and accessibility of pores, while predrying influences removal of CSH interlayer water. BJH calculations showed the increased amount of capillary pores with higher water-to-cement ratio, and the decrease of micropores (< 2 nm), in pastes with 50% or more fly ash or slag. Paste with 10% SF showed a high amount of gel pores, related to the higher amount of CSH gel, calculated from adsorption at 23% RH. A linear relation was observed between BET specific surface and water-cement ratio. Thermogravimetric analysis illustrated the influence of water-cement ratio and pozzolanic materials on the portlandite content. Introduction of silica fume, increased the specific surface accessible to water, but not to nitrogen molecules.  相似文献   

19.
The use of mineral additives in concrete such as fly ash, silica fume, natural pozzolan, metakaolin and calcined clay has become widespread due to their pozzolanic reaction and environmental friendliness. The microstructure characteristics of concrete including pore structure and interfacial transition zone (ITZ) with addition of metakaolin, silica fume and slag were investigated in this study. The experimental results show that the addition of mineral admixtures results in the denser ITZ, optimized pore structure and reasonable pore size distribution especially at later curing stages. Metakaolin presents the most distinct improvement effects on microstructure of concrete. The development of the compressive strength is quantificationally related to the total porosity and average microhardness of the ITZ. Importantly, the influence of metakaolin, silica fume and slag on concrete was analyzed from thermodynamic stability of hydrate phase aspects.  相似文献   

20.
This paper evaluated mechanical and thermal stability of alkali-activated materials obtained from metakaolin and alternative silica sources, such as rice husk ash (RHA) and silica fume (SF), and were reinforced with recycled ceramic particles (RP) obtained by grinding bricks. Specimens were produced, and after 7 days of curing, they were exposed to temperatures between 300 and 1200°C to determine the influence that different percentages of RP had on the mechanical behavior and microstructure of the produced composites. The results showed a reduction in the linear contraction by 10.22% with 20 wt% RP and that the reinforcing materials improved the mechanical performance of the geopolymers after exposure to high temperatures; the compressive strengths reached 137.7 (±11.4)  MPa after being exposed to 1200°C for the matrix based on RHA and 180.6 (±19.15) MPa after being reinforced with 20 wt% RP. The improvement was mainly due to densification and the formation of crystalline products such as leucite, kalsilite, and mullite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号