首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strong polyelectrolytes, known as superplasticizers, improve the initial fluidity of concentrated cement suspensions through electrostatic stabilization. These polyelectrolytes do not maintain the initial fluidity, however, primarily due to an increase in the ionic strength of the cementitious suspension. Consequently, non-ionic polymers are often used in conjunction with polyelectrolytes to provide steric stabilization and hence to sustain the desired fluidity over a longer time, and this has lead to the development of copolymers with both electrostatic and steric (electrosteric) functionalities. To design such polymers, it is necessary to optimize the balance between electrostatic and steric stabilization to maximize suspension fluidity. We have quantified the effects of a strong anionic polyelectrolyte, melamine formaldehyde sulfonate (MFS), and a non-ionic polymer, hydroxypropylmethylcellulose (HPMC), on the zeta potential of cement particles and the steady shear and low-amplitude rheological properties of concentrated cement suspensions. While the adsorption of MFS onto the cement particle surfaces leads to a sign inversion in the zeta potential, the adsorption of the non-ionic HPMC has no significant effect on the potential. The addition of HPMC to the suspensions substantially reduces the steady shear viscosity and the storage modulus at constant MFS concentration; in addition, there exists an intermediate HPMC concentration that minimizes fluidity. The resulting suspension fluidity is also maintained over a longer time than in the absence of HPMC. This improvement in the stability and fluidity of cement suspensions is attributed to “complementary electrosteric dispersion/stabilization”, and provides insight to the design of polymers with electrosteric functionality.  相似文献   

2.
We examined the effect of the boehmite coating thickness on the rheology and consolidation of boehmite-coated SiC suspensions. The thickness of the boehmite coating on SiC was varied by adjusting the boehmite concentration relative to SiC. For boehmite concentrations less than 10 wt%, the coating thickness increased with increasing boehmite concentration. For boehmite concentrations higher than 10 wt%, the coating thickness saturated. Further increase in the boehmite concentration led to the presence of small boehmite particles in the suspensions. All boehmite-coated suspensions gelled near their isoelectric points and the storage moduli of the gels with respect to pH exhibited a maximum near the isoelectric points. Below 10 wt% boehmite, the suspensions had very few small boehmite particles. The maximum storage modulus, G '0,max, of the boehmite-coated SiC gel decreased with increasing coating thickness, t , as G '0,max∝ t −2, in good agreement with our earlier theoretical prediction. Meanwhile, the maximum sedimentation densities, φmax, of the coated suspensions occurred at around pH ∼ 4.0 and increased with increasing coating thickness from under φmax= 25 vol% with 1 wt% boehmite to above φmax= 65 vol% with 10 wt% boehmite due to increased zeta potential with increasing coating thickness. Above 10 wt% boehmite, the excess boehmite particles in the suspension increased the maximum suspension storage modulus, G '0,max, and decreased the maximum sedimentation density, φmax.  相似文献   

3.
This work focuses on the optimization of the rheological properties of silicon suspensions by changing the concentration of a dispersant and the pH value of the dispersing medium. The zeta potential and rheological properties of silicon suspensions as a function of tetramethyl ammonium hydroxide (TMAH) concentration were carried out. The results show that the isoelectric point of the silicon particles was at pH 1.6. A silicon suspension with 46 vol.% particles displayed a minimum viscosity at pH 9.6. The results also show that TMAH is an efficient dispersant by enhancing the absolute value of the zeta potential of silicon particles. The optimum dosage of the dispersant was 0.4 wt.% of silicon particles.  相似文献   

4.
Dynamic viscosity of aqueous suspensions of nanosized zirconia (ZrO2) have been studied for the low volume fraction range. The specific surface area of dry powder was determined from the BET method. The zeta potential of zirconia particles as a function of pH was measured by the microelectrophoretic method. The isoelectric point found in this way was 4.7. The particle density in aqueous suspensions was found by the dilution method. The dynamic viscosity of suspensions was measured by using a capillary viscometer that eliminated the sedimentation effects. Experimental data showed that for dilute zirconia suspension, the relative viscosity increased more rapidly with the volume fraction than that the Einstein formula predicts. This allowed one to calculate the specific hydrodynamic volume of particles in the suspensions and their apparent density. It was found that particles forming zirconia suspensions were composed of aggregates having porosity of 40–50%. The size of the primary particles forming these aggregates was 0.2 μm that agrees well with the BET specific surface data. The influence of an anionic polyelectrolyte:polysodium 4-styrenesulfonate (PSS) on zirconia suspension viscosity also was studied. First the PSS viscosity alone was measured as a function of its volume fraction for various ionic strength of the solutions. The data were interpreted in terms of the flexible rod model of the polyelectrolyte. Then, the viscosity of ZrO2 in PSS solutions of fixed concentration was measured as a function of the concentration of zirconia. It was revealed that the viscosity of the mixtures was proportional to the product of the zirconia and polyelectrolyte viscosities taken separately.  相似文献   

5.
The stabilization of alumina suspensions is key to the development of high‐performance materials for the ceramic industry, which has motivated extensive research into synthetic polymers used as stabilizers. In this study, mimosa tannin extract and a chitosan derivative, that is, macromolecules obtained from renewable resources, are shown to be promising to replace synthetic polymers, yielding less viscous suspensions with smaller particles and greater fluidity, that is, more homogeneous suspensions that may lead to better‐quality products. The functional groups of tannin present in mimosa extract and N,N,N‐trimethylchitosan (TMC) are capable of establishing interactions with the alumina surface, thus leading to repulsion between the particles mainly due to steric and electrosteric mechanisms, respectively. The stabilization of the suspension induced by either TMC or mimosa tannin was confirmed by a considerable decrease in viscosity and average particle size, in comparison with alumina suspensions without stabilizing agents. The viscosity/average particle size decreased by 49/84% and 52/87% for suspensions with TMC and mimosa tannin, respectively. In addition, the increase in the absolute zeta potential upon addition of either TMC or mimosa tannin extract, especially at high pHs, points to an increased stability of the suspension. The feasibility of using derivatives of macromolecules from renewable sources to stabilize aqueous alumina suspensions was therefore demonstrated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The in situ polymerization of an aqueous system comprising epoxy resin and polyamine has been developed to consolidate ceramic suspensions in our previous study. In the present work, the polymerization of the aqueous solution was investigated by an oscillatory method in terms of storage modulus G′. The influences of the epoxy resin on alumina suspensions were evaluated by means of zeta potential and viscosity. The consolidation behaviors of suspensions with different solids were also studied.  相似文献   

7.
Polyelectrolyte species, known as superplasticizers, dramatically affect the rheological properties of dense cement suspensions. We have studied the influence of sulfonated naphthalene formaldehyde condensate (SNF) and carboxylated acrylic ester (CAE) grafted copolymers of varying molecular architecture on the surface (e.g., adsorption behavior and zeta potential) and rheological properties of concentrated cement suspensions of white portland cement and two model compounds, β-Ca2SiO4 and γ-Ca2SiO4. The adsorption of SNF species was strongly dependent on cement chemistry, whereas CAE species exhibited little sensitivity. The respective critical concentrations (Φ*) in suspension required to promote the transition from strongly shear thinning to Newtonian flow (flocculated → stable) behavior were determined from stress viscometry and yield stress measurements. Theoretical analysis of interparticle interactions suggested that only colloidal particles in the size range of ≤1 μm are fully stabilized by adsorbed polyelectrolyte species. Our observations provide guidelines for tailoring the molecular architecture and functionality of superplasticizers for optimal performance.  相似文献   

8.
The stabilization of concentrated nanopowder suspensions is crucial for many industrial applications. Yet, controlling the suspension viscosity is challenging for nanopowder suspension systems. In this study, we examined the adsorption of l-ascorbic acid (Vitamin C) on alumina surfaces and the related reduction in viscosity of the suspensions. Interactions between the ascorbic acid and the alumina surface were investigated by in situ ATR-FTIR and zeta potential measurements. It was shown that ascorbic acid forms complexes with the alumina surface through ligand exchange mechanisms. The optimum concentration of ascorbic acid for minimum suspension viscosity was determined. The maximum achievable solids content could be increased to around 0.35 by the addition of only 1.0 wt.% of dry powder ascorbic acid. Because ascorbic acid is easy to use, inexpensive, and a non-toxic organic additive, it has great potential to be used as a dispersant in a variety of industrial applications, from dilute to concentrated systems of intermediates or products.  相似文献   

9.
In the present work, particle arrangement and their packing in the sediment layer of zirconia suspension were studied. To evaluate the particle settling, aqueous suspensions of zirconia nanoparticles were prepared in different dispersion states. In one state, Dolapix CE64 was used as a dispersant to provide electrosteric mechanism. In another state, pH of the suspension was adjusted at 4 to provide electrostatic mechanism. The other state was the combination of dispersant and pH adjustment which resulted in the most stable suspension. First of all, the stability of all dispersion states was evaluated by zeta potential, sediment volume (SV) and height, viscosity, and packing density (PD). Then, the sediment layers of all suspensions were characterized. Incorporation of electrostatic mechanism was resulted in a main decrease in viscosity with high surface charges, while electrosteric mechanism caused lower sedimentation of particles. Fall velocities of particles/agglomerates were estimated, and the influences of dispersion states on the particles fall velocities were characterized. The microstructural observation revealed homogeneous packing of particles in the sediment layer of the stable suspension demonstrating the proper dispersion of particles. Dolapix CE64 and pH adjustment resulted in a uniform arrangement of particles without agglomeration and spherical and regular granules with a uniform shape.  相似文献   

10.
Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles were investigated. The state of dispersion was evaluated in terms of zeta potential, apparent viscosity and the mean particle size of solid phase in the solution. Zeta potential, apparent viscosity and the mean particle size as a function of pH were performed in absence of dispersant. The result showed that electrostatic stabilization of the aqueous suspension of barite nanoparticles can be accomplished in low acidic and high basic range of pH. In presence of sodium polyacrylate (PAA-Na) dispersant, the isoelectric point (IEP) of the barite nanoparticles was shifted to lower pH and the negative zeta potential was increased in a large range of pH above the (IEP). The optimum amount of PAA-Na dispersant is discussed in the light of zeta potential and viscosity. It is found that the adsorption of PAA is correlated to the net surface charge of the barite nanoparticles and the fraction of dissociated polymer at pH 4, 8.5 and 10. At pH 4, the state of dispersion was achieved at higher amount of electrolyte due to the low fraction of negatively charged dissociated polymer and the positively charge particles. At basic pH, the fraction of dissociated polymer was high and the surface charge of particle was highly negative, therefore, the lowest viscosity was obtained at a small amount of PAA. In addition, the optimum amount of polymer decreased with the increase in pH of the suspension.  相似文献   

11.
王超  徐嫔 《广东化工》2014,(7):12-13,7
应用LVDV-Ⅲ+型可编程流变仪测定了凝聚剂对氧化铁悬浮液的流变特性的影响。实验结果表明,高价凝聚剂对于悬浮液颗粒的凝聚能力要比低价凝聚剂更加明显;随着凝聚剂浓度的增加,悬浮液颗粒的凝聚程度也相应增加;凝聚剂种类的不同,对于悬浮液流变性能的影响也不同,高价凝聚剂对于悬浮液流变性能的影响比低价凝聚剂大。在相同剪切速率下,添加高价凝聚剂悬浮液的表观粘度和剪切应力都大于添加低价凝聚剂悬浮液的表观粘度和剪切应力;凝聚剂浓度的不同,对于悬浮液流变性能的影响也不同。在相同剪切速率下,添加高浓度凝聚剂悬浮液的表观粘度和剪切应力都大于添加低浓度凝聚剂悬浮液的表观粘度和剪切应力,增加凝聚剂浓度对提高悬浮液粘着性能具有积极意义。  相似文献   

12.
To advance the rheological quality of yttria suspensions, the effects of three dispersants were evaluated and compared. It was found that after adding each of these dispersants, zeta potential moved toward negative direction and the pHIEP shifted from basic to acidic. An increase of the pH could increase the absolute zeta potential. The fluidity and stability of yttria suspensions were examined by viscosity measurements and sedimentation tests.  相似文献   

13.
Lead zirconate titanate (PZT) aqueous suspensions were prepared at 60 wt.% solids loading using a commercial ammonium polyacrylate (APA) dispersant. Effects of the dispersant concentration on rheological behavior, dispersion and stability of PZT aqueous suspensions were investigated by means of zeta potential, viscosity and sedimentation height measurements. The results showed that, under suitable conditions, APA dispersant promoted particle dispersion and stabilization in PZT aqueous suspensions. For 60 wt.% solids loading suspensions, the dispersant concentration yielding the lowest viscosity was 0.5 wt.% based on PZT powder dried weight basis. Effects of pH on particle dispersion in the suspensions prepared with APA were studied by laser light scattering technique and scanning electron microscopy. The results showed an improvement in particle dispersion for the alkaline condition, which led to relatively low viscosity and highly stable suspension. Possible particle stabilization mechanisms at various pHs were discussed based on dissociation of the dispersant in water, polymer conformation and adsorption behavior of the dispersant on the particle surface.  相似文献   

14.
We have studied the gelation, consolidation, and rheological properties of boehmite-coated SiC suspensions. A boehmite-coated SiC suspension consists of SiC particles covered with a boehmite layer of a few nanometers in thickness in the suspension. Similar to boehmite suspensions, the boehmite-coated SiC suspension can gel over time. The gelation, as well as the rheological behavior of the boehmite-coated SiC suspension with respect to pH, is shown to be similar to that of a boehmite suspension. However, because of the particle-size difference, a boehmite-coated SiC suspension gels more slowly than suspensions of smaller boehmite particles. The boehmite coating improves the consolidation density of SiC, increasing the sediment density from 39 to 52 vol% and the centrifuged density from 50 to 60 vol%. It, also, makes the consolidation behavior of a boehmite-coated SiC suspension with respect to pH more consistent with the rheological behavior; i.e., lower suspension viscosity and storage modulus correlate with a higher consolidated density. In contrast, suspensions containing SiC particles partially covered with boehmite and individual boehmite particles in the suspensions show no improvement in the sediment density and no systematic correlation between the consolidation density and the rheological properties. This indicates that the complete coating of boehmite on the SiC particles is critical to the improvement in consolidation density.  相似文献   

15.
The relative colloidal stability in ethanol of ceramic powders with Si-O surface groups (Si3N4, SiC, and MoSi2) is reported. SiO2/EtOH suspensions are also examined as a reference. The comparative relationships between pH, particle-surface charge, zeta potential, stability, and suspension rheology are discussed. The nature and influence of the surface species are determined, and the similarities and differences are compared. DLVO theory was used to define suspension stability, and it was found that non-oxide particles in EtOH are charge-stabilized and have viscosity and flow curves that agree with the electrokinetic measurements.  相似文献   

16.
分散剂用量对碳化硅浆料流变性能的影响   总被引:13,自引:3,他引:10  
李玮  顾明元  金燕萍 《硅酸盐学报》2004,32(11):1356-1360
使用四甲基氢氧化铵(TMAH)作为分散剂,研究了分散剂用量对SiC浆料流变性能的影响,并分析了其原因。结果表明:TMAH能够显著提高SiC粉体的zeta电位,降低浆料粘度,从而显著优化浆料的流变性能。在pH为10左右,加入质量分数为0.3%和o.6%NTMAH后zeta电位分别提高了11.7mV和21mV。实验中,在不同体积分数SiC浆料中,加入0.6%TMAH时能够达到最优性能,浆料粘度都达到最低。过量的分散剂则会增加浆料中的离子浓度而导致双电层厚度减小,从而恶化浆料的流变性。  相似文献   

17.
The steady and dynamic rheological behaviors of two cellulose nanocrystal (CNC) suspensions were investigated over a wide range of concentrations. The viscosity, storage and loss modules increased with increasing CNC concentration, and both CNC suspensions showed three regions in a viscosity‐concentration graph. The two critical concentrations depended on the aspect ratio and corresponded to the overlap and gelation concentration. Because of the higher aspect ratio, switchgrass CNC suspension transitioned into a biphasic state and formed a hydrogel at lower concentrations than those of cotton CNC suspensions. Furthermore, the complex viscosities of both CNC suspensions were higher than their steady viscosities; therefore, neither CNC suspension followed the Cox–Merz rule, which may be attributed to the existence of a liquid crystal domain in each suspension. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40525.  相似文献   

18.
Highly concentrated alumina powder suspensions have been prepared in aqueous urea solutions of concentrations in the range 200–360 g/100 mL using an ammonium poly(acrylate) dispersant at 80°C. The dispersant concentration for the suspension viscosity minimum in the urea solutions is higher than that in water due to the higher processing temperature. The urea solutions having higher dielectric constant than that of water offer higher interparticle potential that resulted in better dispersion of the powder as evidenced from the lower viscosity and yield stress of the suspensions. The decrease in temperature increased the suspension viscosity and the suspension formed a strong gel when cooled to room temperature due to the crystallization of urea. The minimum urea solution concentration for a 55 vol% alumina suspension to form a dimensionally stable gel is 240 g/100 mL. The compressive strength and Young's modulus of the gels increased with the increase in urea solution concentration. The alumina ceramics prepared by the urea removal followed by sintering at 1500°C had porosity in the range 28–36 vol% with the rectangular rod‐shaped aligned pores.  相似文献   

19.
Control of the rheological properties of the nanoparticle suspensions is challenging. In this study influence of the solids content and the fructose addition on the viscosity of nano alumina suspensions have been investigated by low temperature differential scanning calorimetry (LT‐DSC), rheometry, and zeta potential measurements. Analysis of the water melting events in LT‐DSC revealed useful information for explaining the rheological behavior of the nanoparticle suspensions. It was shown that the bound water layer has a negligible effect on the viscosity of micrometer‐size particle suspension while it increases the effective solid content of alumina nanoparticle suspensions significantly leading to high viscosities. The presence of fructose modifies the bound water layer, decreases the effective solids content, hence resulting in viscosity reduction. Fructose addition lowers the pH of the suspension, but has a negligible effect on the zeta potential. The origin of the bound water, and electrostatic and steric effects of the fructose addition on the viscosity are discussed.  相似文献   

20.
Aggregation affects the stability of the nanoparticles in fluids. For hydrophilic particles in aqueous suspensions, zeta potential becomes a common measure to control the stability of the particles. However, it is not clear how zeta potential impacts on the interaction of the particles during their close range contact when the hydration repulsion arises strongly. This article demonstrates a method that uses the kinetic theory of aggregation for an aggregation system of changing zeta potential to determine the hydration repulsion and the aggregation efficiency. It was found that the hydration repulsion has an equivalent electrical potential of 30 mV on the stem surface of the particles and an exponential decay length of 2.77 Å. This hydration potential is equivalent to 12 mV zeta potential and contributes 29% to the aggregation coefficient that is 5.5 × 10?6 for a 30 mV zeta potential stabilized silica particle suspension. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2136–2146, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号