首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization kinetics of amorphous alumina–zirconia–silica ceramics was studied by nonisothermal differential scanning calorimetry (DSC). Different amorphous materials were produced by plasma spraying of near-eutectic Al2O3–ZrO2–SiO2 mixtures. Phase composition and microstructure of the amorphous materials and nanocrystalline products were analyzed. All of the investigated materials show an exothermic peak between 940 and 990 °C in the DSC experiments. The activation energies calculated from DSC traces decrease with increasing SiO2 concentration. Values of the Avrami coefficients together with results of the microstructural observations indicate that tetragonal zirconia crystallization from materials containing more than 10 wt.% SiO2 proceeds by a diffusion-controlled mechanism with nucleation occurring predominantly at the beginning of the process. In contrast, material with almost no SiO2 exhibited a value of the Avrami exponent consistent with the crystal growth governed by processes at the phase boundary.  相似文献   

2.
The hydration of pure C3A (Ca3Al2O6) in calcium hydroxide-gypsum saturated solution was analyzed using soft X-ray microscopy. The images show the presence of at least two different types of ettringite crystals during the first 4 h of hydration. They differ in morphology and growing rate. When poly(ethylene-co-vinyl acetate) (EVA) is present, there is a significant change in the hydration kinetics and morphology of the hydration products. EVA particles inhibited or even prevented the formation of ettringite crystals during the early stage of hydration. A cloud of small, bright particles are observed concentrated around the hydrating C3A grains. The particles are most likely to be a product of reaction between EVA and inorganic species in solution.  相似文献   

3.
Influence of orthophosphate ions on the dissolution of tricalcium silicate   总被引:1,自引:0,他引:1  
Tricalcium silicate dissolution in the presence of orthophosphate ions was monitored by measuring the concentrations of calcium and silicate ions in dilute suspensions using a special dissolution cell coupled to an optical emission spectrometer. Results show that increasing adsorption of orthophosphate ions slows down the dissolution of Ca3SiO5 and that a calcium-phosphate precipitate may form at certain orthophosphate concentrations. These observations are correlated with results of calorimetric experiments carried out during the hydration of silica-rich cement pastes in the presence of the same salts.  相似文献   

4.
The influence of MgO on the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals in alite-sulphoaluminate cement is reported in this paper. The results show that adding a suitable amount of MgO can lower the clinkering temperature, promote the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals, and help in the coexistence of the two minerals in the clinker. MgO may obviously decrease the formation of Ca3Al2O6, and increase the SiO2 content incorporated into the interstitial phase.  相似文献   

5.
MgTa2O6 powders were prepared by mechanochemical synthesis from MgO and Ta2O5 in a planetary ball mill in air atmosphere using steel vial and steel balls. High-energy ball milling gave nearly single-phase MgTa2O6 after 8 h of milling time. Annealing of high-energy milled powder at various temperatures (700–1200 °C) indicated that high-energy milling speed up the formation and crystallization of MgTa2O6 from the amorphous mixture. The powder derived from 8 h of mechanical activation gave a particle size of around 28 nm. Although at low-annealing temperatures the grain size was almost the same as-milled powder, the grain size increased with annealing temperature reaching to around 1–2 μm after annealing at 1200 °C for 8 h.  相似文献   

6.
The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet.In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO2 alone and in combination with milled SiO2 nanoparticles was investigated. For this purpose milled CeO2, CeO2 and SiO2 milled together and milled SiO2 particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO2 and CeO2 particles promote the formation of an effective corrosion pigment. The tests evidence also the beneficial effect of the CeO2 milled particles when used in combination with the mechanically treated SiO2 particles. It was proved that in alkaline conditions the effect of the mechanically treated CeO2 and SiO2 particles is dramatically increased.  相似文献   

7.
In this paper analytical evidence on crystal structure and hydration behaviour of C3A solid solutions with MgO, SiO2, Fe2O3, Na2O and K2O is given. Samples were prepared using an innovative sol-gel process as precursor, examined by X-ray powder diffraction, infra-red spectroscopy and the crystal structure was refined by the Rietveld method. A significant shift of lattice parameters was found for C3A solid solutions with SiO2, Fe2O3 or Na2O but only minor changes were detected for K2O. The hydration of C3A solid solutions in the absence of CaSO4 was accelerated for samples doped with SiO2 or K2O and it was retarded in the case of MgO, Fe2O3 or Na2O. The hydration in the presence of CaSO4 was accelerated when C3A was doped with K2O or Na2O, whereas Fe2O3 strongly retarded the hydration. The doping with SiO2 nearly had no influence on the hydration, the effect of MgO was not straight forward.  相似文献   

8.
Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy was ball-milled with 30 mass% La0.9Zr0.1Ni4.5Al0.5 alloy (LaNi5 phase), the effect of the milling time on crystallographic and electrochemical characteristics of the alloy powder was investigated. The amount of amorphous phase increased with increasing milling time from 60 to 360 min, and the LaNi5 phase cannot be observed when milling time was 240 min or more. The maximum discharge capacity and high-rate dischargeability of milled alloy electrodes were obviously higher than those of the alloy electrode before milling. The cycling capacity retention rate after 40 cycles increased from 52.8% (t = 60 min) to 62.9% (t = 360 min).  相似文献   

9.
We have used X-ray photoelectron spectroscopy (XPS) to investigate both tricalcium silicate (Ca3SiO5, C3S) and β-dicalcium silicate (Ca2SiO4, β-C2S), the principal components of cement clinkers. In addition to showing how the two phases may be characterised and differentiated, we show how the sensitivity of these phases to atmospheric carbon dioxide and moisture may, as a result of improper sample preparation, lead to erroneous results. The observed alteration processes of the clinker minerals shed light upon the aging process of cement clinker during storage.  相似文献   

10.
In the CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system, the solid solutions of Ca2(AlxFe1−x)2O5, with x<0.7 (ferrite), Ca2SiO4 (belite), Ca3Al2O6 (C3A) and Ca12Al14O33 (C12A7), were crystallized out of a complete melt during cooling at 8.3 °C/min. Upon cooling to 1370 °C, both the crystals of ferrite with x=0.41 and belite would start to nucleate from the melt. During further cooling, the x value of the precipitating ferrite would progressively increase and eventually approach 0.7. At ambient temperature, the ferrite crystals had a zonal structure, the x value of which successively increased from the cores toward the rims. The value of 0.45 was confirmed for the cores by EPMA. The chemical formula of the rims was determined to be Ca2.03[Al1.27Fe0.68Si0.02]Σ1.97O5 (x=0.65). As the crystallization of ferrite and belite proceeded, the coexisting melt would become progressively enriched in the aluminate components. After the termination of the ferrite crystallization, the C3A and belite would immediately crystallize out of the melt, followed by the nucleation of C12A7. The C12A7 accommodated about 2.1 mass% Fe2O3 in the chemical formula Ca12.03[Al13.61Fe0.37]Σ13.98O33, being free from the other foreign oxides (SiO2 and P2O5).  相似文献   

11.
Early age hydration of barium-doped β-Ca2SiO4 cement, produced from rice hull ash (RHA), is examined by transmission soft X-ray microscopy. Use of low-energy cements produced from by-product materials, such as the cement considered here, may be economically and environmentally advantageous. However, the hydration kinetics and morphology and composition of the products of RHA-based β-Ca2SiO4 cements have not been investigated. Observation of the early age cement hydration shows evidence of cement dissolution and hydration product formation, including the formation of Hadley grains. The rates of the reaction and amount product formed appear to be related to the hydrothermal processing temperature and the chemical composition of the cement. That is, more rapid hydration is observed for barium-doped RHA cements produced at higher temperatures and for cements produced with higher barium contents, within the ranges examined.  相似文献   

12.
This paper describes the synthesis of cements, chemically and structurally related to Ca2SiO4. Silica was obtained from rice hull after heating at 600 °C. Calcium oxide and small amounts of barium chloride were mixed in order to obtain a final (Ca/Si) or (Ca+Ba)/Si ratio equal to 1.95, 1.90, and 1.80, which is lower than in the conventional cement. The solids were mixed and ultrasonically treated for 1 h with a water/solid ratio of about 20. After drying and grinding, the mixtures were heated up to 1100 °C. It was possible, in some cases, to obtain a cementitious material. These cements are structurally related to β-Ca2SiO4 and the lower (Ca+Ba)/Si ratio obtained was 1.95. The initial chemical compositions of these cements are: (Ca1.83+Ba0.12)SiO4 and (Ca1.79+Ba0.16)SiO4. A further lowering in the (Ca+Ba)/Si ratio changes the nature of the silicates.  相似文献   

13.
The soft X-ray transmission microscope, which allows the in situ observation of wet samples of cement at normal pressures with high spatial resolutions (25 nm), was used to observe and compare the effects of two polymers — a water soluble polymer (HPMC — hydroxypropyl methylcellulose) and a latex [EVA-poly(ethylene-co-vinyl acetate)] on the early hydration of C3S and C3A. These polymers are used to modify the properties of fresh and hardened mortars and concretes, especially when adhesive characteristics are required. The images show that the cellulose ether delays the hydration of the cementitious particles and promotes the formation of inner products rather than outer products. On the other hand, EVA particles agglomerate around the hydrating C3S grains, and act as nucleation agents in the development of the composite microstructure. While HPMC slightly changed the aspect of C3A hydration, EVA inhibited or even prevented the formation of ettringite crystals during the early stage of hydration, and resulted in a cloud of small, bright particles concentrated around the hydrating C3A grains.  相似文献   

14.
TiO2–SiO2 mixed oxide with large pore size was synthesized by the xerogel method and it was then used to prepare the WO3/TiO2–SiO2 catalyst by an incipient wetness method. The as‐prepared WO3/TiO2–SiO2 sample was employed as the first heterogeneous catalyst in the liquid‐phase cyclopentene oxidation by aqueous H2O2, which exhibited higher selectivity (about 75%) to glutaraldehyde (GA) and, in turn, higher GA yield than the WO3/SiO2 heterogeneous catalyst and even the tungstic acid homogeneous catalyst under the same reaction conditions. The amorphous WO3 phase was identified as the active sites and the loss of the active sites was proved to be not important. The lifetime of the catalyst was determined and its regeneration method was proposed. The effects of various factors on the catalytic behaviors, such as the WO3 loading, the calcination temperature, the surface acidity and the reaction media, were investigated and discussed based on various characterizations including BET, XRD, XPS, FTIR, EXAFS and Raman spectra etc. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In the present work, we examine the simultaneous effect of iron and phosphorus additions on the calcium carbonate decomposition in CaCO3, SiO2, Fe2O3 and P2O5 mixtures at the molar ratio CaCO3/SiO2=2. The formation of the dicalcium silicate Ca2SiO4 is also studied. The temperatures of the decarbonation and the enthalpy evolution during the heating of the mixtures are measured. The additions of Fe2O3 and P2O5 oxides decrease the onset temperature of the CaCO3 decomposition. The energy consumption of decarbonation at about 835 °C is lowered when the dopant concentrations increase. Synthesized solid solutions are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The free-lime quantity is determined by chemical analysis. The mineralogical analysis at room temperature of the products of the reaction shows the presence of iron-phosphorus-doped β, α′ and α-C2S modifications.  相似文献   

16.
Quantitative X-ray diffraction analysis was used to study the early hydration of the tricalcium silicate and β-dicalcium silicate phases in neat Portland cement pastes. There is an initial ‘dormant’ period during which these phases hydrate only very slowly. In the case of the Ca3SiO5 phase in the cement used, this ‘dormant’ period lasts 3–4 hours. Of the Ca3SiO5 originally present 5% hydrated in 5 h; 22% in 10 h; 34% in 15 h; 45% in 24 h; and 63% in 72 h. No conclusive evidence of any β-dicalcium silicate hydration during the seventy-two hour period investigated was found.  相似文献   

17.
MoSi2-30 wt.% TiC nanocomposite powder was successfully synthesized by ball milling and following heat treatment. Effect of milling time and annealing temperature were investigated. The products synthesis and reactions progress were characterized by XRD. Morphology and microstructure of milled powders were monitored by SEM and TEM, respectively. Results showed that the synthesis of this composite begins after 10 h of milling and progresses gradually up to 30 h of milling. MoSi2-TiC composite was completely synthesized after annealing of 30 h milled powder at 900 °C. On the basis of Reitveld refinement method, the mean grain size and microstrain of 13.2 nm and 0.44% were obtained, respectively for 30 h milled powder that is in consistent with TEM image. In the spite of grain growth and strain release, this nanocomposite powder maintained its nanostructure after annealing.  相似文献   

18.
Mechanochemical synthesis was used to prepare BaTa2O6 powders from BaCO3 and Ta2O5 precursors in a planetary ball mill. Effect of milling time and heat treatment temperature on the formation of BaTa2O6 and on the microstructure was investigated. Intensive milling of starting materials resulted in crystallization of BaTa2O6 even after 1 h of milling time and single phase BaTa2O6 was obtained after 10 h of milling under optimal conditions. The powder derived from 10 h of mechanical activation had crystallite size of 22 nm. But the increase in milling time did not decrease the crystallite size further. High energy milling activated the powders that although 1 h of milling led to formation of single phase BaTa2O6 at 1200 °C, this temperature decreased to 900 °C after 5 h of milling. No significant grain growth was observed when the milled powders were heat treated below 900 °C. However, annealing at 1100 and 1200 °C gave an average BaTa2O6 grain size of 180 and 650 nm, respectively. An unidentified phase started to form at 1100 °C increasing to high amounts at 1200 °C and they had different shapes and sizes than BaTa2O6 grains. These elongated large grains were thought to be due to liquid phase formation caused by iron contamination.  相似文献   

19.
Rod-like CaxSiOx + 2 catalysts were synthesized by using one-pot hydrothermal method. Catalysts calcined at 550 °C were used in the transesterification reaction of soybean oil with methanol. Under methanol reflux condition, FAME yields of 82% and 95% were achieved on Ca4SiO6 in a reaction time of 1 and 2 h, separately. Also, the FAME yields on different CaxSiOx + 2 catalysts were correlated with their basic properties. Besides, a FAME yield of ca. 80% can be achieved under room temperature over Ca4SiO6 catalyst.  相似文献   

20.
A Mg2SiO4:Eu3+ nanopowder was synthesized by a polyacrylamide gel method. In this route, the gelation of the solution is achieved by the formation of a polymer network which provides a structural framework for the growth of particles. The densification of the powders was also studied. An amorphous nanopowder was synthesized and crystallized to Mg2SiO4 after heat-treatment via a solid-state reaction at a relatively low temperature of about 700 °C. The powders prepared by the polyacrylamide gel method showed better sinterability than the powders synthesized by the conventional sol–gel method. The relative density of the sample was 97% at 1500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号