首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HEC influence on cement hydration measured by conductometry   总被引:2,自引:0,他引:2  
Cellulose ethers are of universal use in factory-made mortars, though their influences on mortar properties at a molecular scale are poorly understood. Recent studies dealt with the influence of hydroxyethylmethyl cellulose (HEMC) and hydroxypropylmethyl cellulose (HPMC) molecular parameters on cement hydration. It was concluded that the degree of substitution is the most relevant factor on cement hydration kinetics, contrary to the molecular weight. Nevertheless, the major role played by the substitution degree has not been verified for other types of cellulose ethers such as hydroxyethyl cellulose (HEC), which generally possesses a higher hydration retarding capacity compared to HPMC and HEMC. In this frame, a study of the impact of HEC molecular parameters on cement hydration was performed. A negligible influence of the molecular weight was observed. Moreover, the results emphasize that the hydroxyethyl group content mainly determines the delay of cement hydration.  相似文献   

2.
Changes in C3S hydration in the presence of cellulose ethers   总被引:1,自引:0,他引:1  
The influence of cellulose ethers (CE) on C3S hydration processes was examined in order to improve our knowledge of the retarding effect of cellulose ethers on the cement hydration kinetics. In this frame, the impacts of various cellulose ethers on C3S dissolution, C-S-H nucleation-growth process and portlandite precipitation were investigated. A weak influence of cellulose ethers on the dissolution kinetics of pure C3S phase was observed. In contrast, a significant decrease of the initial amount of C-S-H nuclei and a strong modification of the growth rate of C-S-H were noticed. A slowing down of the portlandite precipitation was also demonstrated in the case of both cement and C3S hydration. CE adsorption behavior clearly highlighted a chemical structure dependence as well as a cement phase dependence. Finally, we supported the conclusion that CE adsorption is doubtless responsible for the various retarding effect observed as a function of CE types.  相似文献   

3.
The impact of cellulose ethers (CE) on C3A hydration was examined to support the understanding of the retarding effect of CE on cement hydration. In this sense, we successively studied the CE adsorption on ettringite and calcium hydroaluminates, and then the CE influence during C3A hydration in presence or absence of calcium sulphate. We emphasized a phase-specific adsorption of CE depending on CE chemistry. Besides, in addition of CE, we highlighted a gradual slowing down of C3A dissolution as well as ettringite and calcium hydroaluminates precipitation. Again, a great impact of CE chemistry and CE adsorption behaviour were noticed. Thus, HECs induce always a stronger adsorption on calcium hydroaluminates and a longer C3A hydration delays than HPMCs.  相似文献   

4.
The degradation mechanisms of natural fiber in the alkaline and mineral-rich environment of cement matrix are investigated. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior by designing a contrast test to embed sisal fibers in pure and metakaolin modified cement matrices. In addition to durability of sisal fiber-reinforced cement composites determined by means of flexural properties, degradation degree of the embedded fibers is directly evaluated by proposing a novel separation approach. The results indicate that, by reducing alkalinity of pore solution, metakaolin effectively mitigates the deterioration of natural fiber. By combining results of thermogravimetric analysis and microstructure, the alkali degradation process of natural fiber, which consists of hydrolysis of lignin and hemicellulose, stripping of cellulose microfibrils and deterioration of amorphous regions in cellulose chains, is visually presented. Two new concepts of mineralization mechanism, calcium hydroxide (CH)-mineralization and self-mineralization, are also proposed and quantitatively characterized.  相似文献   

5.
We show how nuclear magnetic spin–lattice relaxation dispersion of proton-water (NMRD) can be used to elucidate the effect of cellulose ethers on water retention and hydration delay of freshly-mixed white cement pastes. NMRD is useful to determine the surface diffusion coefficient of water, the specific area and the hydration kinetics of the cement-based material. In spite of modifications of the solution's viscosity, we show that the cellulosic derivatives do not modify the surface diffusion coefficient of water. Thus, the mobility of water present inside the medium is not affected by the presence of polymer. However, these admixtures modify significantly the surface fraction of mobile water molecules transiently present at solid surfaces. This quantity measured, for the first time, for all admixed cement pastes is thus relevant to explain the water retention mechanism.  相似文献   

6.
HPMC and HEMC influence on cement hydration   总被引:2,自引:0,他引:2  
Cellulose ethers such as hydroxyethylmethyl cellulose (HEMC) and hydroxypropylmethyl cellulose (HPMC) are common admixtures in factory made mortars. Nevertheless, their use principally remains empirical, and no cement-admixture interaction mechanism has ever been rigorously demonstrated. The main issue of this publication deals with the control of secondary effects generated by these admixtures such as the retardation of cement hydration. In this frame, a study of the impact of HEMC and HPMC molecule parameters on the modification of cement hydration was carried out. Minor influence of the molecular weight and of the hydroxypropyl or the hydroxyethyl group content was observed. On the contrary, the results emphasize that the methoxyl group content appears as the key parameter of the hydration delay mechanism.  相似文献   

7.
This study aims to explore a novel approach to improve the durability of sisal fiber in cement composites by using by-products of biomass power plant: rice husk ash (RHA). The effects of two RHAs on the fiber's degradation were investigated indirectly by testing flexural behavior of sisal fiber-cement composite beams and directly by means of uniaxial tensile properties, thermal decomposition, crystallinity indices and microstructures of embedded fibers, after exploring up to 30 wetting and drying cycles. Allowing the distinction between pozzolanic activities, the efficiency of RHA was compared with two fly ashes and combinations of two clay minerals (metakaolin and nanoclay) with a cement substitution level of 30 wt.%. The durability of composites was improved considerably by incorporating RHA owing to the mitigation of fiber's degradation: the ultimate tensile strength and cellulose fraction of embedded fibers were improved by 384% and 45%, respectively. Fine RHA and the combination of metakaolin and nanoclay yield similar efficiency in mitigating degradation of sisal fiber, and are better than the coarse RHA and fly ashes. The correlations between cement hydration and sisal fiber degradation were analyzed. The results indicate that degree of hydration, calcium hydroxide content and alkalinity of the cement matrix play decisive roles in alkali attacks and mineralization of fiber's cell walls.  相似文献   

8.
We study in this paper the physical and chemical phenomena at the origin of the influence of cellulose ethers on flow onset of cement pastes. We first show that cellulose ether adsorption seems to slow down the nucleation of calcium silicates at the surface of the cement grains in the tens of minutes following mixing. We moreover suggest that the measured collapse of the van der Waals attractive interaction network upon the addition of cellulose ethers finds its origin in repulsive steric forces generated by adsorbed cellulose ether molecules. Finally, we measure the formation of a new interaction network in the system. From dimensional inter-particle force analysis, we suggest that this network finds its origin in the bridging of cement grains by adsorbed ether molecules. Flow onset occurs then through a desorption process, the energy of which can be assessed via adsorption isotherm measurements.  相似文献   

9.
苏美娟  王子明  赵攀  刘晓 《硅酸盐通报》2022,41(12):4172-4179
碱性和无碱速凝剂掺入水泥后的水化机理不同,导致应用性能存在明显差异。本文通过测试凝结时间和砂浆抗压强度等宏观性能对比了两种速凝剂的应用性能,并通过水化放热分析、XRD定量分析、热重分析和SEM微观形貌观察等微观方法综合分析了两者的早期水化历程。结果表明:碱性速凝剂加入水泥后,[Al(OH)4]-加快了水泥中石膏的消耗速度,水化初期生成大量钙矾石(AFt),促进了硅酸三钙(C3S)矿物的水化,缩短了水泥浆体的凝结时间并提高了砂浆的早期抗压强度,但石膏的加速消耗也使得单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C-A-H)等水化产物提前生成,影响了水泥基材料的后期抗压强度发展;无碱速凝剂加入水泥后,[Al(OH)4]-和SO2-4在液相中生成了大量AFt,促进了铝酸三钙(C3A)和C3S矿物的水化,影响了氢氧化钙(CH)的结晶析出。值得注意的是,SO2-4不仅促进了C3A生成AFt的过程,也延缓了水泥中石膏的消耗及AFm和C-A-H等产物的生成,因此无碱速凝剂的加入除了明显提高早期抗压强度外,后期28 d抗压强度也不受影响。  相似文献   

10.
Chemical admixtures increase the rheological complexity of cement pastes owing to their chemical and physical interactions with particles, which affects cement hydration and agglomeration kinetics. Using oscillatory rheometry and isothermal calorimetry, this article shows that the cellulose ether HMEC (hydroxymethyl ethylcellulose), widely used as a viscosity modifying agent in self-compacting concretes and dry-set mortars, displayed a steric dispersant barrier effect during the first 2 h of hydration associated to a cement retarding nature, consequently reducing the setting speed. However, despite this stabilization effect, the polymer increased the cohesion strength when comparing cement particles with the same hydration degree.  相似文献   

11.
A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.  相似文献   

12.
A model of the coupled evolution of hydration–moisture transfer processes and their influence on porosity is suggested for polymer-modified-mortars (PMM) with cellulose ether addition. This model is based on mass balance equations of each phase of the material (solid, liquid and gas), and hydration rates of cement compounds. It takes into account the effect of the cellulose ether, used as a polymer admixture, on the hydration kinetics. The model allows describing the time evolution of the water content, the porosity and the amount of anhydrous and hydrated products, which are the main input data characterizing the material properties in most durability predictive models. Simulation results were compared to the experimental ones obtained by thermogravimetric analysis (TGA) and water porosity measurements.  相似文献   

13.
Rheological behavior as influenced by plasticizers and hydration kinetics   总被引:1,自引:0,他引:1  
In the calcium aluminates cement - Portland cement - calcium sulfate based self leveling underlayments, the influence of raw materials on the properties such as rheology and hydration kinetics was considered. It was confirmed that calcium aluminates cement system formulation is suitable in cases where a short open time is required, and Portland cement system formulation is suitable in cases where a long open time is required with the result of flowability or rheology. And, in order to thin the viscosity of slurry, it turned out that the application of MF 2651F as a plasticizer and tartaric acid as a retarder were effective. Moreover, MF 2651F seldom delayed the hydration reaction compared with other plasticizers. The flow value and the yield stress showed correlation, without being dependent on the difference in formulation or a water powder ratio. This was considered to be because for the yield stress to relate to the fragility of the aggregation structure of slurry.  相似文献   

14.
The hydration of iron-rich calcium aluminate cement (CAC) has been investigated by differential calorimeter and quantitative powder X-ray diffraction (QXRD). A simplified stoichiometric model of early age CAC hydration based on reaction schemes of the principal mineral monocalcium aluminate was employed. The CAC characteristic feature of retardation of nucleation and growth mechanism with temperature requires employing more than one kinetic mechanism to describe the resulting complex hydration kinetics. This paper proposes a single equation kinetic model of CAC hydration which comprises simultaneously three main mechanisms: nucleation and growth, chemical interaction and mass transfer. A gradual change between kinetic mechanisms was grasped with a reasonable inter-dependency of the kinetic parameters. The overall hydration kinetics was described relative to the amount of the both reactants, cement and free water.  相似文献   

15.
In earlier work, we have observed discrepancies relating to the early hydration of calcium aluminate cement (CAC) when comparing data from heat flow calorimetry of CAC paste with results from mortar strength tests using the crushing method. Here, we investigated on this phenomenon and found that the sand which is used as a filler exerts a major influence on CAC hydration resulting in acceleration. Furthermore, in particular fine filler materials such as, for example, microsilica, fine limestone powder, and especially α- and γ-Al2O3 also produced a strong hydration accelerating effect which is dependent on their specific surface area. The mechanism underlying the acceleration is that under alkaline conditions their negative surface charge attracts calcium ions as was confirmed via inductively coupled plasma atomic emission measurements. Such a layer generates favourable conditions for the nucleation of CAC hydration products (C-A-H phases). The resulting crystalline hydrates which form on the surface of the filler particles submerged in CAC cement pore solution were visualized via SEM imaging. This way, specifically selected fillers can significantly accelerate CAC hydration and save precious lithium salts which are commonly used to boost the early strength of CAC.  相似文献   

16.
17.
In practice, most of the studies about the interaction between cement and accelerators is performed with hand-mixed pastes. However, in many applications mixing occurs through spraying, which may affect accelerators reactivity and the microstructure of the hardened paste. The objective of this study is to analyze how the mixing process influences the early hydration of accelerated cement pastes. Isothermal calorimetry, X-ray diffraction, thermogravimetry and SEM imaging were performed on cement pastes produced by hand-mixing and by spraying, using equivalent doses of an alkali-free and an alkaline accelerator and two types of cement. Results showed a great influence of the spraying process on the reactivity of accelerators and on the morphology of the precipitated hydrates. Variations in hydration kinetics caused by the mixing method are explained and the results obtained might have a significant repercussion on how future research on the behavior of accelerated mixes will be performed.  相似文献   

18.
Technical OPC contains mixed sulfate carriers in varying amounts. Gypsum and anhydrite are added to the clinker during the milling process where the gypsum dehydrates partially to bassanite and anhydrite. Due to different hydration kinetics of these phases, it is crucial to be able to characterize the composition of sulfate in a cement system to reach an optimal and reproducible cement hydration. In the current paper different calcium sulfate compositions are investigated by XRD methods in order to identify phase content. Special focus is put on the discrimination of the hemihydrate (bassanite) and anhydrite III as well as on transformation processes of anhydrite III through ambient humidity.  相似文献   

19.
The objective of this work is to parametrize the early age hydration behavior of accelerated cement pastes based on the chemical properties of cement and accelerators. Eight cements, three alkali-free and one alkaline accelerators were evaluated. Isothermal calorimetry, in situ XRD and SEM imaging were performed to characterize kinetics and mechanisms of hydration and the microstructure development. The reactivity of all accelerators is directly proportional to their aluminum and sulfate concentrations and to the amount and solubility of the setting regulator contained in cement. Alite hydration is enhanced if a proper C3A/SO3 ratio (between 0.67 and 0.90) remains after accelerator addition and if limestone filler is employed, because undersulfated C3A reactions are avoided. Combinations of compatible materials are recommended to enhance the performance of the matrix and to prevent an undesirable hydration behavior and its consequences in mechanical strength development.  相似文献   

20.
The phase formation, heat of hydration and dilatation in a blended cement consisting of 50 wt.% calcium aluminate cement, 25 wt.% Portland cement and 25 wt.% calcium sulfate were studied (w/c=1). The calcium sulfate was β-hemihydrate, anhydrite and mixes of the two. Kinetic expressions describing the ettringite formation in the pastes with the pure calcium sulfates were found. Hydration reactions were suggested and the phase development was compared to the hydration heat by mass and heat balances. When the calcium sulfate was 75 and 50 wt.% β-hemihydrate, the systems behaved as a linear combination of the 100 and 0 wt.% blends. At 25 wt.%, the hydration kinetics differed from the other blends. With only β-hemihydrate, the last 50% of ettringite formation was accompanied by expansion, mainly caused by interaction of crystals growing radially on cement grains. In the paste with only anhydrite, ettringite crystals grew in solution and produced no expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号