共查询到19条相似文献,搜索用时 128 毫秒
1.
用蒸汽爆破后的蒲草纤维与聚丁二酸丁二醇酯(PBS)制备复合材料,研究蒲草纤维的质量分数对复合材料力学性能、热学性能以及流变性能的影响。研究结果表明:随着蒲草纤维组分的增加,复合材料的弯曲强度和弯曲模量有明显提高,而冲击强度呈现先增大后减小的趋势,当蒲草纤维质量分数为5%时,冲击强度达到最大值5.49 k J/m2。热重分析结果表明蒲草纤维与PBS基体间存在互补作用使复合材料在高温条件下的热稳定性提高。DSC结果表明:随着蒲草纤维质量分数的增加,复合材料的结晶度和熔融温度都呈现增大趋势。平板流变结果表明:蒲草纤维降低了PBS分子的运动能力,增加了复合材料的黏度。 相似文献
2.
3.
以表面活性剂硬脂酸聚乙二醇酯(PEOST)、甘油、尿素和乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯无规三元共聚物(AX89)为因素,设计L9(34)正交试验表,进行了聚丁二酸丁二醇酯(PBS)/淀粉复合材料的优化实验。此外,利用红外光谱对该复合材料进行了表征,并以最优配方制备了改性淀粉,研究了改性淀粉用量对PBS/淀粉复合材料性能的影响。结果表明:甘油和尿素是影响PBS/淀粉复合材料拉伸强度和撕裂强度的主要因素,而对断裂伸长率影响最大的则是PEOST。对复合材料中PBS结晶温度影响最大的是甘油,其次为PEOST、AX89,最后是尿素。以所确定的最优水平组合制备PBS/淀粉复合材料,其拉伸强度、断裂伸长率、撕裂强度可分别达到11.32 MPa、162.32%和89.67 N/m。随着改性淀粉用量的增加,PBS/淀粉复合材料的拉伸强度、断裂伸长率和撕裂强度均呈下降趋势,其中当淀粉添加量为40%时,降幅分别达到69.16%、71.26%和65.12%。此外红外光谱显示,与纯PBS相比,PBS/淀粉复合材料在3 365和1 617 cm~(-1)处还出现了羟基和羰基的特征峰。 相似文献
4.
PBS/剑麻复合材料制备与性能研究 总被引:1,自引:0,他引:1
利用蒸汽爆破预处理剑麻纤维(SESF)作为增强体,通过模压成型制备聚丁二酸丁二醇酯(PBS)/SESF复合材料,研究了SESF质量分数对复合材料力学性能的影响。对比了在剑麻纤维质量分数为30%的条件下,和未经预处理的2种剑麻纤维制得的复合材料的力学性能,并通过扫描电镜(SEM)对试样进行观察分析。结果表明,随着SESF质量分数的增加,复合材料的拉伸强度先增大后减小,在SESF质量分数为30%时达到最大值,比纯PBS的提高了15.5%;弯曲强度和弯曲模量均随剑麻纤维质量分数的增大而提高,其中弯曲强度在SESF质量分数为30%时的比纯PBS的提高了132.5%;断裂伸长率和冲击强度随着SESF质量分数的增加而降低。 相似文献
5.
淀粉/PBS共混材料的制备与性能研究 总被引:5,自引:0,他引:5
将聚丁二酸丁二醇酯(PBS)加入到淀粉体系中,制备了淀粉基共混材料,并对共混体系的性能进行了研究。结果表明:在淀粉中加入PBS可有效增加体系的硬度并提高其维卡软化点,100份淀粉中加入40份PBS体系硬度达到最大值;加入10份PBS时,体系的维卡软化点达到最大值;100份淀粉中加入40份PBS时体系拉伸性能最优,再增加时反而下降;PBS的加入对淀粉材料的防水性有一定改善,与纯淀粉体系相比,样品溶于水的质量下降了近50%。此外,加入10份的PBS可使淀粉注射成型的冷却定型时间缩短3/4,使挤出成型的牵引速度提高两倍,有利于淀粉的成型加工。 相似文献
6.
7.
采用聚己二酸-2-甲基-1,3-丙二醇酯二醇和异佛尔酮二异氰酸酯(IPDI)为原料,合成聚氨酯预聚体,其可以作为增容剂,提高淀粉/聚丁二酸丁二醇酯(PBS)复合材料的界面相容性。研究聚氨酯预聚体软段相对分子质量及预聚体含量对复合材料性能的影响,加入少量聚氨酯预聚体能显著提高复合材料的韧性。结果表明,以相对分子质量为3 000的聚酯多元醇制备聚氨酯预聚体,当聚酯多元醇含量为5%时,复合材料的断裂伸长率从4.19%提高至130.55%,冲击强度从4.01 kJ/m2提高至8.19 kJ/m2,复合材料的韧性得到显著提高,该复合材料未来可应用于餐饮材料领域。 相似文献
8.
纤维改性对小麦秸秆纤维/PBS复合材料性能的影响 总被引:1,自引:0,他引:1
利用NaOH对小麦秸秆纤维进行处理,同时采用了不同的蒸煮助剂和改性剂,以改变纤维自身物理性能及其表面化学性质。将改性纤维与聚丁二酸丁二醇酯(PBS)共混,制备了秸秆纤维/PBS复合材料,并通过X射线能谱仪(EDS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)对改性前后的纤维进行了分析和观测,研究分析了助剂和改性剂对复合材料性能的影响。结果表明:秸秆纤维经NaOH/4%Na2SO3处理,以及碱处理纤维经钛酸酯偶联剂NDZ201、环氧树脂E44改性,所得纤维增强复合材料的性能较为优异。 相似文献
9.
采用硅烷偶联剂(KH-550)对纳米氧化锌进行了表面改性,通过熔融共混法制备了聚丁二酸丁二醇酯(PBS)/纳米氧化锌复合材料,利用扫描电子显微镜、热重分析仪、差示扫描量热仪等对复合材料的力学性能、热性能和非等温结晶性能进行了研究分析,并通过Ozawa-Flynn-Wall方法分析了复合材料的热降解行为。结果表明,纳米氧化锌能提高PBS的拉伸强度和弯曲强度,但降低了其冲击强度;改性后的纳米氧化锌可以提高其与PBS的界面相容性,并提高其在PBS基体中的分散性能,不同程度地提高了复合材料的力学性能;纳米氧化锌提高了PBS的结晶速率,降低了其热解反应活化能。 相似文献
10.
采用双螺杆挤出机将稳定剂E处理聚碳酸亚丙酯(PPC)后的改性材料(PPC-E)与聚丁二酸丁二醇酯(PBS)熔融共混制备了PPC-E/PBS生物降解复合材料。通过热重分析仪(TG)、差示扫描量热仪(DSC)和万能试验机研究了材料的热力学性能,并用扫描电镜(SEM)和偏光显微镜(POM)对其微观结构进行了分析。结果表明,加入稳定剂E后,初始分解温度T5%较纯PPC提高了105.3℃,玻璃化转变温度Tg提高到35.5℃;当PBS的质量分数为10%~20%时,PPC-E/PBS复合材料表现出良好的综合性能。 相似文献
11.
12.
13.
14.
研究了聚烯烃/霞石复合材料的拉伸性能、弯曲性能和表面硬度,并采用扫描电镜直接观察其冲击断面的形态结构以及霞石在基体材料中的分布状态和被包裹状态。研究结果表明:采用硅烷偶联剂可以增进霞石与基体材料间的相互作用,有效地改善材料的力学性能,其处理效果优于只能作为分散剂使用的磷酸酯和聚乙二醇;霞石可以在HDPE、PP中使用,提高材料的综合性能 相似文献
15.
16.
将增强体亚麻纱线进行碱处理和偶联剂处理,再制成pp/亚麻包覆纱后进行平纹布织造,用层合热压法制成复合材料。处理后的亚麻纱线性能发生了变化;对最终复合材料进行了拉伸性能和声发射的测试,结果表明前处理后的复合材料界面粘结性提高,拉伸强度提高,弹性模量减小,其中碱处理的作用更大。 相似文献
17.
18.
通过热压成型制备了竹原纤维增强可生物降解塑料复合材料,研究了材料的力学性能、热稳定性、断裂面的微观结构等,以及复合材料的微生物降解性能。研究结果表明,复合材料的拉伸强度和弯曲强度随竹原纤维含量增加而增加,当竹原纤维质量分数为16.67%时,复合材料的拉伸强度和弯曲强度较纯可降解塑料分别增加46.9%和93.1%,但断裂伸长率和冲击强度随着竹原纤维含量增加而降低。复合材料的热稳定性比纯可降解塑料和竹原纤维更好。在土壤微生物的作用下,复合材料在20 d时间的降解率可达19.4%。 相似文献
19.
将针状硅灰石和尼龙6经双螺杆挤出机熔融共混,制备了硅灰石/尼龙6复合材料。研究了硅烷偶联剂种类、偶联剂质量分数、共混工艺条件和硅灰石质量分数对复合材料性能的影响。用光学显微镜和扫描电子显微镜分别观察了硅灰石共混前后的形貌和硅灰石/尼龙6复合材料冲击试样断面的形貌。结果表明:用KH-550预处理的硅灰石比KH-560预处理的硅灰石制备的硅灰石/尼龙6复合材料的力学性能好。硅灰石采用侧喂料和较低的螺杆转速制备硅灰石/尼龙6复合材料,可以提高硅灰石/尼龙6复合材料的力学性能。随着硅灰石质量分数的增加,复合材料的力学性能提高。 相似文献