首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue engineering scaffold degradation in aqueous environments is a widely recognized factor determining the fate of the associated anchorage-dependent cells. Electrospun blends of synthetic polycaprolactone (PCL) and a biological polymer, gelatin, of 25, 50, and 75 wt% were investigated for alterations in crystallinity, microstructure and morphology following widely used in vitro biological exposures. To our knowledge, the effects of these different aqueous-based biological media compositions on the degradation of these blends have never been directly compared. X-ray diffraction (XRD) analysis exposed that differences in PCL crystallinity were observed following exposures to phosphate buffered solution (PBS), Dulbecco’s modified eagle medium (DMEM) cell culture media, and DI water following 7 days of exposure at 37 °C. XRD data suggested that in vitro medium exposures aid in providing chain mobility and rearrangement due to hydrolytic degradation of the gelatin phase, allowing previously constrained, poorly crystalline PCL regions to achieve more intense reflections resulting in the presence of crystalline peaks. The dry, as-spun modulus of relatively soft 100 % PCL fibers was approximately 10 % of any gelatin-containing composition. Tensile testing results indicate that hydrated gelatin containing scaffolds on average had a fivefold increase in elongation compared to as-spun scaffolds. After 24-h of aqueous exposure, the elastic modulus decreased in proportion to increasing gelatin content. After 1 day of exposure, the 75 and 100 % gelatin compositions largely ceased to display measurable values of modulus, elongation or tensile strength due to considerable hydrolytic degradation. On a relative basis, common aqueous in vitro medium exposures (deionized water, PBS, and DMEM) resulted in significantly divergent amounts of crystalline PCL, overall microstructure and fiber morphology in the blended compositions, subsequently ‘shielding’ scaffolds from significant changes in mechanical properties after 24-h of exposure. Understanding electrospun PCL-gelatin scaffold dynamics in different aqueous-based cell culture medias enables the ability to tailor scaffold composition to ‘tune’ degradation rate, microstructure, and long-term mechanical stability for optimal cellular growth, proliferation, and maturation.  相似文献   

2.
To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)–chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA–CS scaffolds were evaluated. The results suggested CII/HyA–CS scaffolds have a highly porous structure (porosity: 94.8 ± 1.5%), high water-binding capacity (79.2 ± 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 ± 1.8 and 58.1 ± 2.6°C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 ± 3.4 and 63.5 ± 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA–CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA–CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.  相似文献   

3.
There are significant challenges for using emulsion templating as a method of manufacturing macro-porous protein scaffolds. Issues include protein denaturation by adsorption at hydrophobic interfaces, emulsion instability, oil droplet and surfactant removal after protein gelation, and compatible cross-linking methods. We investigated an oil-in-water macro-emulsion stabilised with a surfactant blend, as a template for manufacturing protein-based nano-structured bio-intelligent scaffolds (EmDerm) with tuneable micro-scale porosity for tissue regeneration. Prototype EmDerm scaffolds were made using either collagen, through thermal gelation, fibrin, through enzymatic coagulation or collagen-fibrin composite. Pore size was controlled via surfactant-to-oil phase ratio. Scaffolds were crosslink-stabilised with EDC/NHS for varying durations. Scaffold micro-architecture and porosity were characterised with SEM, and mechanical properties by tensiometry. Hydrolytic and proteolytic degradation profiles were quantified by mass decrease over time. Human dermal fibroblasts, endothelial cells and bone marrow derived mesenchymal stem cells were used to investigate cytotoxicity and cell proliferation within each scaffold. EmDerm scaffolds showed nano-scale based hierarchical structures, with mean pore diameters ranging from 40–100 microns. The Young’s modulus range was 1.1–2.9?MPa, and ultimate tensile strength was 4–16?MPa. Degradation rate was related to cross-linking duration. Each EmDerm scaffold supported excellent cell ingress and proliferation compared to the reference materials Integra? and Matriderm?. Emulsion templating is a novel rapid method of fabricating nano-structured fibrous protein scaffolds with micro-scale pore dimensions. These scaffolds hold promising clinical potential for regeneration of the dermis and other soft tissues, e.g., for burns or chronic wound therapies.  相似文献   

4.
5.
Three-dimensional biodegradable porous type II collagen scaffolds are interesting materials for cartilage tissue engineering. This study reports the preparation of porous type II collagen-chondroitin sulfate (CS) scaffold using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The physico-chemical properties and ultrastructural morphology of the collagen scaffolds were determined. Then, isolated chondrocytes were cultured in porous type II collagen scaffolds either in the presence and/or absence of covalently attached CS up to 14 days. Cell proliferation, the total amount of proteoglycans and type II collagen retained in the scaffold and chondrocytes morphology were evaluated. The results suggest that EDC-crosslinking improves the mechanical stability of collagen-CS scaffolds with increasing EDC concentration. Cell proliferation and the total amount of proteoglycans and type II collagen retained in the scaffolds were higher in type II collagen-CS scaffolds. Histological analysis showed the formation of a denser cartilaginous layer at the scaffold periphery. Scanning electron microscopy (SEM) revealed chondrocytes distributed the porous surface of both scaffolds maintained their spherical morphology. The results of the present study also indicate that type II collagen-CS scaffolds have potential for use in tissue engineering.  相似文献   

6.
The selection of an appropriate scaffold represents one major key to success in tissue engineering. In cardiovascular applications, where a load-bearing structure is required, scaffolds need to demonstrate sufficient mechanical properties and importantly, reliable retention of these properties during the developmental phase of the tissue engineered construct. The effect of in vitro culture conditions, time and mechanical loading on the retention of mechanical properties of two scaffold types was investigated. First candidate tested was a poly-glycolic acid non-woven fiber mesh, coated with poly-4-hydroxybutyrate (PGA/P4HB), the standard scaffold used successfully in cardiovascular tissue engineering applications. As an alternative, an electrospun poly-ε-caprolactone (PCL) scaffold was used. A 15-day dynamic loading protocol was applied to the scaffolds. Additionally, control scaffolds were incubated statically. All studies were performed in a simulated physiological environment (phosphate-buffered saline solution, T = 37 °C). PGA/P4HB scaffolds showed a dramatic decrease in mechanical properties as a function of incubation time and straining. Mechanical loading had a significant effect on PCL scaffold properties. Degradation as well as fiber fatigue caused by loading promote loss of mechanical properties in PGA/P4HB scaffolds. For PCL, fiber reorganization due to straining seems to be the main reason behind the brittle behavior that was pronounced in these scaffolds. It is suggested that those changes in scaffolds’ mechanical properties must be considered at the application of in vitro tissue engineering protocols and should ideally be taken over by tissue formation to maintain mechanically stable tissue constructs.  相似文献   

7.
In order to investigate cell-based tendon regeneration, a tendon rupture was simulated by utilizing a critical full-size model in female rat achilles tendons. For bridging the defect, polyglycol acid (PGA) and collagen type I scaffolds were used and fixed with a frame suture to ensure postoperatively a functional continuity. Scaffolds were seeded with mesenchymal stem cells (MSC) or tenocytes derived from male animals, while control groups were left without cells. After a healing period of 16 weeks, biomechanical, PCR, histologic, and electron microscopic analyses of the regenerates were performed. Genomic PCR for male-specific gene was used to detect transplanted cells in the regenerates. After 16 weeks, central ossification and tendon-like tissue in the superficial tendon layers were observed in all study groups. Biomechanical test showed that samples loaded with tenocytes had significantly better failure strength/cross-section ratio (P < 0.01) compared to MSC and the control groups whereas maximum failure strength was similar in all groups. Thus, we concluded that the application of tenocytes improves the outcome in this model concerning the grade of ossification and the mechanical properties in comparison to the use of MSC or just scaffold materials.  相似文献   

8.
The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.  相似文献   

9.
The present study investigates the potential use of non-catalyzed water-soluble blocked polyurethane prepolymer (PUP) as a bifunctional cross-linker for collagenous scaffolds. The effect of concentration (5, 10, 15 and 20%), time (4, 6, 12 and 24 h), medium volume (50, 100, 200 and 300%) and pH (7.4, 8.2, 9 and 10) over stability, microstructure and tensile mechanical behavior of acellular pericardial matrix was studied. The cross-linking index increased up to 81% while the denaturation temperature increased up to 12 °C after PUP crosslinking. PUP-treated scaffold resisted the collagenase degradation (0.167 ± 0.14 mmol/g of liberated amine groups vs. 598 ± 60 mmol/g for non-cross-linked matrix). The collagen fiber network was coated with PUP while viscoelastic properties were altered after cross-linking. The treatment of the pericardial scaffold with PUP allows (i) different densities of cross-linking depending of the process parameters and (ii) tensile properties similar to glutaraldehyde method.  相似文献   

10.
In the current study PCL/HA composites were fabricated using SLS as two- and three-dimensional lattice structures and exposed to a cellular component (MC 3T3 osteoblast-like cells). The main aims were to determine the mechanical differences due to powder composition and to observe the physical and mechanical changes pertaining to cell presence. These structures were characterized by compressive mechanical testing, and the effects of cell culturing and degradation on mechanical properties of the scaffolds with different PCL/HA compositions were determined. Moreover, changes in the scaffold morphology due to the cell culture conditions were determined by μ-CT analysis.Cells steadily grew on the scaffolds for 21 days with preferential distribution around the macropores and initially PCL/HA(15%) composites had higher cell numbers. Removal of loosely sintered parts was observable during the culturing period. Cell culture conditions did not change the compressive moduli significantly but had a distinct effect on compressive strength. For PCL/HA(15%) composites, an initial loss in strength caused by cell culture was reversed by longer cell exposure, with compressive strength of the structures restored to the initial properties (p  0.05). μ-CT measurements showed widespread morphological changes in the scaffolds, such as a decrease in the roughness of the struts. In general, in the initial period composites with lower HA content (15 wt.%) showed better metabolic activity compared to the higher HA content, however by day 14 the performance of the two compositions was equal. These results suggest that changes in sintering due to the differences in powder composition can have profound effects on the short and long term mechanical properties of the scaffold particularly under cell culture conditions, and this should be closely considered for SLS processing of scaffolds.  相似文献   

11.
The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering.  相似文献   

12.
Biocomposite scaffolds made from polymers and bioceramics can provide the mechanical structure necessary for osteoinductivity in the growth of new bone. The aim of this research was to investigate the properties of a novel nanocomposite scaffold made from a combination of polycaprolactone (PCL) and forsterite nanopowder which could find use in bone tissue engineering applications. The scaffold itself was fabricated by a method of solvent casting and particle leaching. The effect of forsterite content on the mechanical properties, bioactivity, biodegradability, and cytotoxicity of the scaffolds was investigated. Significant improvement in the mechanical properties was observed in the nanocomposite scaffolds as compared to that seen in the pure PCL scaffolds. Bioactivity was also observed in the nanocomposite scaffolds, a trait which was not present in the pure PCL scaffolds. Biodegradation assay indicated that the addition of forsterite nanopowder could modulate the degradation rate of PCL. In vitro tests of cytotoxicity and osteoblast proliferation showed that the nanocomposite scaffolds were non-cytotoxic, thereby allowing cells to adhere, grow, and proliferate on the surface of these scaffolds. The results obtained in this experiment suggest that the combination of PCL with forsterite nanopowder can be used to form scaffolds suitable for use in bone tissue engineering. The exact material behavior required can be adjusted through variation of the ratio between PCL and forsterite nanopowder used to form the scaffold.  相似文献   

13.
Scaffolds based on chitosan (CTS), collagen (Coll) and glycosaminoglycans (GAG) mixtures cross‐linked by tannic acid (TA) with bioglass 45S5 addition were obtained with the use of the freeze‐drying method. The prepared scaffolds were characterised for morphology, mechanical strength and degradation rate. Moreover, cell viability on the obtained scaffolds was measured with and without the presence of ascorbic acid and dexamethasone. The main purpose of the research was to compare the effectiveness of bioglass 45S5 influence on the physicochemical and biological properties of scaffolds. The results demonstrated that the scaffolds based on the blends of biopolymers cross‐linked by TA are stable in an aqueous environment. Scanning electron microscope images allowed the observation of a porous scaffold structure with interconnected pores. The addition of bioglass nanoparticles improved the mechanical properties and decreased the degradation rate of composite materials. The biological properties were improved for 20% tannic acid addition compared to 5%. However, the addition of bioglass 45S5 did not change to cells response significantly.Inspec keywords: biomedical materials, drying, porous materials, freezing, tissue engineering, proteins, nanofabrication, bone, scanning electron microscopy, polymers, molecular biophysics, cellular biophysics, nanoparticles, porosityOther keywords: chitosan, collagen, glycosaminoglycans, bioglass 45S5 addition, freeze‐drying method, degradation rate, ascorbic acid, dexamethasone, physicochemical properties, biological properties, porous scaffold structure, bioglass nanoparticles, mechanical properties, tannic acid addition, scanning electron microscopy  相似文献   

14.
A combined freeze-drying and particulate leaching method for scaffold synthesis showed an improvement in the horizontal microstructure of the gelatin/chitosan scaffolds. Type and concentration of the cross-linking agent, freezing temperature, concentration of the polymeric solution and gelatin/chitosan weight ratio were the variables affecting the scaffold properties. Assessment of the tensile properties of the scaffolds revealed that for a scaffold with 50% chitosan, glutaraldehyde, as a cross-linking agent, created much tighter polymeric network compared to N,N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide (EDC). However, in the case of gelatin scaffolds, EDC was identified as the stronger cross-linker. Compressive behavior of the scaffolds satisfied formulations obtained from the theoretical modeling of the low-density, elastomeric foams. The investigation of the scaffold degradation indicated that the increase in the mechanical strength of the scaffolds would not always reduce their degradation rate.  相似文献   

15.
In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

16.
Urethral strictures were common disease caused by over-expression of extracellular matrix from fibroblast. In this study, we compare two nanoyarn scaffolds for improving fibroblasts infiltration without inhibition the over-expression of extracellular matrix. Collagen/poly(L-lactide-co-caprolactone) (Col/P(LLA-CL)) nanoyarn scaffolds were prepared by conjugated electrospinning and dynamic liquid electrospinning, respectively. In addition, co-axial electrospinning technique was combined with the nanoyarn fabrication process to produce nanoyarn scaffolds loading Wnt signaling pathway inhibitor. The mechanical properties of the scaffolds were examined and morphology was observed by SEM. Cell morphology, proliferation and infiltration on the scaffolds were investigated by SEM, MTT assay and H&E staining, respectively. The release profiles of different scaffolds were determined using HPLC. The results indicated that cells showed an organized morphology along the nanoyarns and considerable infiltration into the nanoyarn scaffolds prepared by dynamic liquid electrospinning (DLY). It was also observed that the DLY significantly facilitate cell proliferation. The D-DLY could facilitate the infiltration of the fibroblasts and could be a promising scaffold for the treatment of urethra stricture while it may inhibit the collagen production.  相似文献   

17.
Porous scaffold is one of the key factors in skin tissue engineering. In this study, a facile method was developed to prepare the glutaraldehyde (GA) cross-linked collagen/chitosan porous scaffold (S2). The properties of S2 were compared with the scaffolds prepared by the traditional method (S1). Compared to the rough surface and collapsed inner structure of S1, S2 showed a smooth surface and controlled size. After treated by GA with same concentration, S1 and S2 showed the similar swelling ratios, which are big enough to ensure the nutrient supply in the early stage of wound healing. The effects of the fabrication methods as well as the GA concentration on the cross-linking degree and in vitro degradation degree of the scaffolds were studied. It was found that the cross-linking degree of S2-0.25% was much higher than that of S1. Investigation of the tensile and compression properties of the scaffolds found that the mechanical property of S2-0.04% is closest to that of S1. High performance liquid chromatography (HPLC) was applied to determine the residual GA. The results proved that, compared to water rinse, oven drying is a feasible and effective method to remove the residual GA. Finally, the cytocompatibility of S2 was evaluated by in vitro culture of fibroblasts. The results of cell morphology and cell viability proved that S2-0.04% could retain the original good cytocompatibility of S1 to accelerate cell infiltration and proliferation effectively. All these results indicate that it is a feasible method to prepare the GA cross-linked collagen/chitosan scaffold.  相似文献   

18.
Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen–GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen–GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen–GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen–GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.  相似文献   

19.
Abstract

In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

20.
纳米羟基磷灰石/聚己内酯复合生物活性多孔支架研究   总被引:5,自引:0,他引:5  
采用水热法制备了纳米羟基磷灰石(n-HA)及其与聚己内酯(PCL)的复合材料. 用熔融浇铸/食盐微粒浸出法制备了孔径在200~400μm、大孔互相贯通的复合材料支架. 通过细胞培养和体内动物实验研究了该支架的生物学性能. 结果表明,复合支架的孔隙率随致孔剂用量的增加而增加,而抗压强度随之而减小;支架的最大孔隙率可达86%,相应的抗压强度为2.4MPa. 成骨细胞在支架上的细胞粘附率和增殖随磷灰石含量增加而提高,复合材料明显高于单纯的PCL支架. 组织学观察显示,新生骨长入多孔支架和复合材料形成了直接的骨性结合. n-HA/PCL复合材料支架有很好的生物相容性和生物活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号