首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丛发敏  夏春智  刘鹏 《焊接》2020,(2):20-23
采用光学显微镜、维氏硬度计和电化学分析仪等对不同固溶温度下S31803双相不锈钢TIG多层焊缝的显微组织、硬度及电化学腐蚀性能进行了研究。试验结果表明,S31803双相不锈钢TIG多层焊缝主要由奥氏体和铁素体组成,且多层焊缝区域中也出现少量σ相,而焊缝下层焊道中奥氏体含量明显少于上层焊道;经过固溶处理,奥氏体和铁素体含量接近,在经过1 050℃固溶处理后σ相消失;但随着固溶温度的提高,奥氏体所占比例增大。固溶处理促使焊缝上下层的硬度趋于接近,当950℃固溶热处理后,焊缝硬度略有增加,而经过1 050℃固溶处理,焊缝硬度降低。此外,随固溶温度升高,焊缝耐腐蚀性越好,其中固溶温度为1 050℃时,耐腐蚀性能最佳。  相似文献   

2.
采用金相显微镜、扫描电镜、能谱分析、室温冲击等方法,研究了800℃固溶处理5~120min后2205双相不锈钢σ相析出以及对冲击性能的影响规律.结果表明:固溶处理10 min时开始有σ相析出,随固溶时间的延长,σ相析出增多,析出尺寸增大,析出速度呈先增后减的趋势;σ相析出伴随着大量的二次奥氏体沿σ相两侧向铁素体晶内生长,造成铁素体含量减少,奥氏体含量增加;2205双相不锈钢的冲击性能对σ相析出非常敏感,σ相在α/γ相界上析出,造成晶界脆化,少量σ相析出就导致冲击韧度大幅下降,并随σ相析出量的增加持续降低,在双相不锈钢热加工过程中应尽量缩短在σ相析出温度范围内的停留时间,避免σ相析出造成不利影响.  相似文献   

3.
采用金相显微镜、扫描电镜、能谱分析、室温冲击等方法,研究了不同固溶温度下2205双相不锈钢σ相析出行为以及对冲击性能的影响,用于指导双相不锈钢的热加工工艺.结果表明:在750~ 900℃时,有σ相析出,析出位置集中在α/γ相界上.随着固溶温度的升高,σ相析出尺寸变大,析出量呈先增多再减少,σ相析出的鼻尖温度范围在850 ~ 900℃之间.σ相析出使2205双相不锈钢冲击韧性急剧下降,随固溶温度的升高,冲击韧性持续降低,900℃时冲击韧性最差,仅有38 J,因此双相不锈钢在热加工过程中应尽量避免在σ相析出温度范围内停留.  相似文献   

4.
采用金相显微观察、定量相分析、能谱分析等方法,研究了室温压缩变形对2205双相不锈钢在700~950℃固溶处理后σ相析出行为的影响,用于指导双相不锈钢的冷、热加工工艺。结果表明,压缩变形并没有扩大双相不锈钢固溶处理的σ相析出温度范围,但加快了σ相的析出速度,导致σ相析出量增多,析出部位由α/γ相界扩大至铁素体晶内和奥氏体晶内,同时导致σ相析出鼻尖温度由850℃降至800℃。  相似文献   

5.
利用光学显微镜、扫描电镜和透射电镜和电化学分析测试方法等研究了固溶和时效处理对UNS S32750超级双相不锈钢(UNS S32750 SDSS)组织和腐蚀行为的影响。结果表明,随固溶温度和时效温度的增加,基体除了析出正常的R、χ及σ相外,在固溶温度为1050~1150℃及时效温度550℃时,存在富Cr的体心立方相。当固溶温度大于1050℃时,实验钢中各相成分的含量波动与合金元素的配分现象有关。在腐蚀环境为40℃10%H_2SO_4溶液中,UNS S32750 SDSS的腐蚀迹象不明显,能够安全应用。  相似文献   

6.
通过金相显微镜和扫描电镜观察了S32750超级双相不锈钢(SDSS)经650~1000℃时效处理后的显微组织和微观形貌;通过XRD分析了时效后各试样的物相结构;借助动电位极化、电化学阻抗和Mott-Schokkty曲线等方法,考察了时效后的S32750 SDSS在5%(体积分数)HF溶液中的腐蚀行为。结果表明:当时效温度为650和1000℃时,S32750 SDSS内并没有析出物产生。当温度上升到750~950℃时,开始产生σ析出相;且温度为850℃时,σ析出相最多,抗氢氟酸腐蚀性能最差。这主要是因为析出的σ相造成了材料内Cr和Mo分布的不均匀,促进了腐蚀微电池的形成,加快了不锈钢的溶解。同时,σ相的析出也增大了钝化膜的载流子密度,促进了F-的吸附,增大了钝化膜的溶解速率,降低了钝化膜的稳定性,加快了双相不锈钢的腐蚀。  相似文献   

7.
通过光学显微镜、扫描电镜对2205双相不锈钢1050、1350 ℃固溶30 min+650~1000 ℃时效0.5~1440 min后σ相形貌和含量进行观测。结果表明:经过1050 ℃固溶处理后,2205双相不锈钢在650~850 ℃时效处理过程中存在σ相析出行为。当时效温度为850 ℃时,σ相析出最快;随着时效温度偏离850 ℃,σ相析出速度降低。经过1350 ℃固溶后,σ相析出温度整体提高,析出温度范围更宽。σ相析出后即发生迅速长大,在3 h内体积分数可达0.25%~1.75%;之后其生长速率逐渐减缓。σ相首先在铁素体与奥氏体相界处以小于1 μm的近似球状颗粒形貌析出,之后沿着铁素体相中宽度在几微米的狭窄区域向铁素体内生长。2205双相不锈钢的时效处理温度影响σ相的析出行为,时效处理应在偏离850 ℃的温度下进行,以防止σ相的析出和快速长大。  相似文献   

8.
利用扫描电镜、透射电镜、X射线衍射仪、电化学工作站等试验及手段,研究了2507(S32750)超级双相不锈钢经700~1000 ℃时效不同时间后σ相的析出规律及其对冲击性能和腐蚀性能的影响规律。结果表明:σ相析出速度很快,析出量随时效时间的延长先增加后逐步减少,在850~900 ℃时效后σ相的析出量最大。σ相的析出严重降低材料的冲击及腐蚀性能,建议时效温度不低于950 ℃。  相似文献   

9.
分析了时效温度、时效时间、固溶温度、铬和钼含量对2205双相不锈钢中σ相析出量的影响规律。结果表明:随着时效时间延长,σ相析出量依次增加。在相同的时效时间下,随着时效温度升高σ相含量依次增大,在850 ℃时达到最大值;温度超过850 ℃后,随着时效温度升高σ相含量依次减小。时效时间相同的情况下,随着固溶温度、铬含量和钼含量升高,σ相析出时间变短、析出量增加。  相似文献   

10.
研究了固溶处理工艺对双相不锈钢组织及力学性能的影响。对经不同温度固溶处理后的试样进行了性能检测,并借助OM、SEM及电化学等分析手段对2205的显微组组织、析出物及耐腐蚀性能等进行了观察和分析,结果表明:低温固溶时,双相不锈钢中易产生大量的脆性析出相(σ相)是导致其塑性恶化及耐蚀性降低的原因;提高固溶温度可减少σ相的析出,有利于双相不锈钢的塑性和耐蚀性的改善;此外,双相不锈钢中铁素体含量随固溶温度升高而增大,但其所占比例受冷速影响较小。  相似文献   

11.
通过定量金相法、电化学试验和慢应变速率拉伸试验研究了固溶温度对2507双相不锈钢组织和耐腐蚀性能的影响,通过超景深观察了拉伸断口裂纹在2507双相不锈钢两相组织中的分布。结果表明,随着固溶温度的升高,2507双相不锈钢中铁素体相含量升高奥氏体相含量降低,1050℃时两相分布比较均匀相比例接近1∶1,有较好的抗点蚀和应力腐蚀性能;1000℃时有少量σ相在铁素体与奥氏体相界析出;此外2507双相不锈钢拉伸断口裂纹优先在铁素体中产生和传播,并终止于奥氏体。  相似文献   

12.
《塑性工程学报》2016,(3):125-132
对高温固溶后的SAF2906双相不锈钢进行时效处理,固溶温度为1 200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃、950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,采用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。结果表明,在本实验条件下σ相的析出量随时效温度的升高先增大后减小,在约850℃达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢相比有相似之处,形核位置大部分出现在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,但有部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间达到5min时,σ相比例5%,此时伸长率可达1 000%。  相似文献   

13.
利用XSL-4-12箱式热处理炉、ZEISS金相显微镜、HRS-150数显洛氏硬度计及拉伸试验机研究了固溶处理对Cr23Ni7Mo2Cu0.6双相不锈钢组织与性能的影响。结果表明,铁素体含量随着固溶温度的升高而增加,在930~960 ℃之间铁素体与奥氏体面积比达到1∶1,σ相的含量随着固溶温度的升高而逐渐减少,在960 ℃时仅有少量σ相存在于相界处,1020 ℃时由于锻造造成的奥氏体相分布不均的情况也得到了改善。合金硬度与抗拉强度随着固溶温度的上升呈现先下降后上升的趋势,分别在1020 ℃和1050 ℃达到最小值94.4 HRB和547 MPa,伸长率则随着固溶温度的升高呈现先上升后下降的趋势,在990 ℃时达到峰值41.5%。综合钢丝拉拔变形过程中材料的硬度、塑韧性及组织均匀性对材料成形性能的影响,Cr23Ni7Mo2Cu0.6双相不锈钢的固溶温度宜选择1020 ℃。  相似文献   

14.
《塑性工程学报》2015,(5):100-107
对高温固溶之后的SAF2906双相不锈钢进行时效处理,固溶温度为1200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃和950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。实验结果表明,在本实验条件下,σ相的析出量随时效温度的升高呈现先增大后减小的趋势,在850℃左右达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢有相似之处,形核位置大部分在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间长于5min,σ相比例下降到5%以下,此时伸长率可达1000%。  相似文献   

15.
采用金相显微镜、扫描电镜、能谱分析、透射电镜和性能测试等方法,研究了固溶温度对22Cr双相不锈钢显微组织和性能的影响.结果表明:在950~1150 ℃范围,实验钢中α、γ两相含量与固溶温度呈近似直线关系;材料的显微硬度(HV)和强度(σb)先降后升,在1050 ℃时达到最小值;当固溶温度为950 ℃,组织中出现了σ相,σ相是导致22Cr双相不锈钢塑性、韧性下降的主要原因;随着固溶温度的升高,Cr、Mo的分配系数K变小,Ni的分配系数K增大,表明合金元素在α和γ相中浓度差别变小.  相似文献   

16.
固溶处理对2205双相不锈钢组织及钝化膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
用不同温度对2205双相不锈钢进行固溶处理,利用定量金相法及硬度法、电化学极化试验、电化学阻抗谱试验的方法研究固溶温度与2205双相不锈钢微观组织和钝化膜特性之间的关系。结果表明,当固溶温度为950 ℃时,有σ相存在,分布于铁素体/奥氏体晶界,当固溶温度为1000 ℃时,σ相消失,铁素体相比例随固溶温度的升高而升高,奥氏体相比例则呈相反规律;电化学试验和阻抗谱试验结果显示,材料在950 ℃时钝化膜稳定性和耐蚀性能最差,在1050 ℃时钝化膜稳定性和耐蚀性能最好。  相似文献   

17.
通过对特超级双相不锈钢S33207进行不同温度的固溶处理,采用SEM对S33207进行组织观察及奥氏体与铁素体两相中成分分布的分析,以及各自点蚀抗力当量(PREN)值的测算。结果表明:特超级双相不锈钢S33207在1100℃固溶处理时其σ相完全溶解,此时两相比例较为理想,接近1∶1。当温度为1130℃时,两相各自PREN值达到理想水平,此时材料具有较佳的耐点腐蚀性能。建议工业生产中选择1100~1130℃温度范围对此钢进行固溶处理。  相似文献   

18.
 研究了950~1300℃固溶处理对00Cr25Ni7Mo4N超级双相不锈钢组织的影响。结果表明,≤1000℃固溶处理时,钢中有σ相析出,要消除热轧态的σ相,固溶温度应大于1050℃;随着固溶温度升高,铁素体相含量增加,奥氏体相含量下降。最佳固溶处理温度在1050℃~1100℃之间,此时两相比例接近1:1;随着固溶温度的提高,两相的晶粒尺寸在逐渐增大,到了1250℃晶粒明显长大。  相似文献   

19.
观察2205双相不锈钢固溶处理后的组织,并对组织中铁素体与奥氏体的两相比例进行统计分析;对2205双相不锈钢经过不同温度的固溶处理、冷轧变形后,在一定条件下进行恒温拉伸试验,观察研究材料的超塑性延伸率随着固溶温度和两相比例的变化规律。试验结果表明,当固溶温度从1050℃升高到1100℃时,奥氏体相所占比例变化不大,材料的延伸率变化也不明显;当固溶温度从1150℃增加到1350℃时,奥氏体相比例从42.76%降低到26.07%,铁素体与奥氏体的两相比变大,其延伸率也逐渐增大。冷轧变形量为80%的材料,其延伸率从560%增大到1690%;冷轧变形量为85%的材料,其延伸率从810%增大到1500%。  相似文献   

20.
利用OM,EPMA,SEM,EDS,TEM等研究了固溶温度对S32760双相不锈钢热轧板显微组织的影响及合金元素的分布特征,并通过电化学工作站测定了材料的耐点蚀性能.结果表明,S32760双相不锈钢在1080℃以上高温固溶过程中,N元素从g相扩散转移至d相中.若固溶后缓慢冷却,则N原子又重新迁移回g相中;如果固溶后水冷,则N原子来不及扩散,于d相中原位弥散析出Cr2N颗粒.Cr2N颗粒的数量由淬火前的固溶温度决定,温度越高数量越多.当固溶温度从1100℃升至1300℃时,d相中N的固溶度快速上升,其显微硬度由281 HV提高至345 HV;而g相由于相比例降低也使得N的浓度间接上升,显微硬度由290 HV升至314 HV.同时,由于实验钢中含有W,S32760双相不锈钢热轧板在1040℃以下热处理有s相析出,因此其固溶水冷温度区间较窄,最佳固溶温度为1060℃.此温度保温60 min后水冷,试样中无析出物,Brinell硬度为249 HBW,点蚀电位为1068 m V,维钝电流密度为1.48×10-4A/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号